$\underline{\text{Def}} \text{ Let } \mathbf{u} \text{ and } \mathbf{v} \text{ be vectors in } \mathbb{R}^n. \text{ The } \qquad \qquad \text{of } \mathbf{u} \text{ and } \mathbf{v}, \text{ denoted } \mathbf{u} \cdot \mathbf{v} \text{ is }$ defined as

$$\mathbf{u} \cdot \mathbf{v} = \mathbf{u}^T \mathbf{v} = \begin{bmatrix} u_1 & u_2 & u_3 & \cdots & u_n \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ \vdots \\ v_n \end{bmatrix} =$$

NOTE The result of an inner product is a _____.

Ex Given
$$\mathbf{u} = \begin{bmatrix} 3 \\ -4 \\ 0 \end{bmatrix}$$
 and $\mathbf{v} = \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}$, compute

(a).
$$\mathbf{u} \cdot \mathbf{v}$$

(b). $\mathbf{v} \cdot \mathbf{u}$

(c). $\mathbf{u} \cdot \mathbf{u}$

THEOREM Properties of Inner Product

- (a). $\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$
- (b). $(\mathbf{u} + \mathbf{v}) \cdot \mathbf{w} = \mathbf{u} \cdot \mathbf{w} + \mathbf{v} \cdot \mathbf{w}$

(c).
$$(c\mathbf{u}) \cdot \mathbf{v} = c(\mathbf{u}) \cdot \mathbf{v} = \mathbf{u} \cdot (c\mathbf{v})$$

- (d). $\mathbf{u} \cdot \mathbf{u} \ge \mathbf{0}$
- (e). $\mathbf{u} \cdot \mathbf{u} = \mathbf{0}$ iff $\mathbf{u} = \mathbf{0}$

What is the distance between two points (x_1, y_1) and (x_2, y_2) in \mathbb{R}^2 ?

What are the corresponding formulas in \mathbb{R}^3 ?

Extend these ideas to \mathbb{R}^n :

<u>DEF</u> Let \mathbf{v} be a vector in \mathbb{R}^n . The _______ of \mathbf{v} , denoted $\|\mathbf{v}\|$ (or $|\mathbf{v}|$), is the _______

 $\|\mathbf{v}\| =$

<u>THEOREM</u> For any scalar c, $||c\mathbf{v}|| = |c|||\mathbf{v}||$

Proof

<u>DEF</u> A ______ vector is a vector with a length of one.

Ex Given
$$\mathbf{v} = \begin{bmatrix} 2\\ -1\\ 2\\ 0 \end{bmatrix}$$
, find a unit vector \mathbf{u} in the same direction as \mathbf{v} .

Step 1. Find the length of \mathbf{v} .

Step 2. Divide **v** by its length $\|\mathbf{v}\|$, i.e. $\mathbf{u} = \frac{\mathbf{v}}{\|v\|}$.

<u>NOTE</u> The process of finding a unit vector in the same direction as \mathbf{v} is called _____ \mathbf{v} .

Recall, that a basis for a vector space (or subspace) is not unique.

<u>Ex</u> Let W be the subspace of \mathbb{R}^3 that is spanned by $\mathcal{B}_1 = \left\{ \begin{bmatrix} -2\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\1 \end{bmatrix} \right\}$ Find a basis for W that contains only unit vectors.