Theorem

[Section 5.1, Theorem 2]

If $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r$ are r eigenvectors that correspond to r <u>distinct</u> eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_r$ of an $n \times n$ matrix A, then $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r\}$ is linearly independent.

Proof

Let $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r$ be eigenvectors that correspond to distinct eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_r$ of an $n \times n$ matrix A.

[Show that $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r\}$ is linearly independent.]

Since \mathbf{v}_1 is an $\mathbf{v}_1 \neq \mathbf{0}$.

BWOC, suppose that $\{\mathbf v_1, \mathbf v_2, \dots, \mathbf v_r\}$ is ______.

Then by a previous theorem (Sec 1.7), one of the vectors can be written as a ______ of the previous vectors.

Let p be the smallest index such that \mathbf{v}_{p+1} is a _____ of the preceding vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p$, where $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p$ are linearly independent.

Then there exists scalars c_1, c_2, \ldots, c_p , such that

$$\mathbf{v}_{p+1} = \tag{*}$$

Multiply (*) by A on the left:

$$\Rightarrow A\mathbf{v}_{p+1} = Ac_1\mathbf{v}_1 + Ac_2\mathbf{v}_2 + \dots + Ac_p\mathbf{v}_p$$

 $= c_1 A \mathbf{v}_1 + c_2 A \mathbf{v}_2 + \dots + c_p A \mathbf{v}_p$ by properties of matrix multiplication.

$$\lambda_{p+1}\mathbf{v}_{p+1} = \underline{\hspace{1cm}} (**) \text{ since } \mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}_p,\mathbf{v}_{p+1} \text{ are eigenvectors.}$$

Now, multiply (*) by λ_{p+1} .

$$\Rightarrow \lambda_{p+1} \mathbf{v}_{p+1} = \underline{\qquad}$$

$$= c_1 \lambda_{p+1} \mathbf{v}_1 + c_2 \lambda_{p+1} \mathbf{v}_2 + \dots + c_p \lambda_{p+1} \mathbf{v}_p \qquad (***)$$

Subtract (**) - (***)

$$\Rightarrow \mathbf{0} = c_1(\underline{})\mathbf{v}_1 + c_2(\underline{})\mathbf{v}_2 + \dots + c_p(\underline{})\mathbf{v}_p \qquad (****)$$

Since $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p$ are linearly independent, each coefficient in (****) must be ______.

i.e. $c_k(\lambda_k - \lambda_{p+1}) = 0$ for all k = 1, 2, ..., p.

$$\Rightarrow$$
 or

 $\Rightarrow \lambda_k = \lambda_{p+1}$ which is not possible, since the eigenvalues are ______.

Therefore, $c_k = 0$ for $k = 1, 2, \ldots, p$.

Substitution into (*) gives $\mathbf{v}_{p+1} = \underline{\hspace{1cm}} \rightarrow \text{since it is an} \underline{\hspace{1cm}}$ (and must be $\underline{\hspace{1cm}}$).

Therefore _____

THEOREM An $n \times n$ matrix with n distinct eigenvalues is diagonalizable.

Proof

- (a). The dimension of the eigenspace for an eigenvalue λ_k is less than or equal to the multiplicity of λ_k .
- (b). A is diagonalizable if and only if the dimension of the eigenspace for each λ_k equals the multiplicity of λ_k .

PROOF: BYSC

EX: Determine whether A is diagonalizable if A is a 4×4 matrix with eigenvalues $\lambda = -1, 3, -4, -4$, and the basis for each eigenspace, respectively, is

$$\mathcal{B}(\lambda = -1) = \left\{ \begin{bmatrix} 1\\-1\\0\\1 \end{bmatrix} \right\}, \qquad \mathcal{B}(\lambda = 3) = \left\{ \begin{bmatrix} 0\\0\\1\\0 \end{bmatrix} \right\}, \qquad \mathcal{B}(\lambda = -4) = \left\{ \begin{bmatrix} 2\\0\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\1\\3 \end{bmatrix} \right\}$$