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Theorem If A and B are n× n matrices, which are similar, then they have the same characteristic equation and
hence the same eigenvalues.

Proof Let A and B be similar n× n matrices. Then

B = P−1AP for some invertible matrix P

B − λI = P−1AP − λI

= P−1AP − λ P−1P since I = P−1P

= P−1AP − P−1λP since scalars commute with matrices

= P−1 (AP − λP ) by factoring out P−1

= P−1(A− λI)P by factoring out P

Take the determinant of both sides:

det(B − λI) = det
[
P−1(A− λI)P

]
= det(P−1) det(A− λI) det(P ) by properties of determinants (Theorem 6, Sec 3.2)

= det(P−1) det(P ) det(A− λI) since determinants are scalars , they commute

= det(P−1P ) det(A− λI) by properties of determinants (Theorem 6, Sec 3.2)

= det(I) det(A− λI)

= det(A− λI)

i.e. det(B − λI) = det(A− λI)

Therefore, A and B have the same characteristic polynomial and hence, the same eigenvalues. �

1. Determine whether the following statement is true or false. If it is true, prove it. If it is false, give a counter-example.

True or False: If A and B are row equivalent, then they have the same eigenvalues.
[Hint: Consider matrices whose eigenvalues are really easy to find.]
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If a matrix A is similar to a matrix with a simple form (e.g. a diagonal matrix), then it can help with many
computations.

Ex: Given the diagonal matrix D =

1 0 0
0 −2 0
0 0 5

, compute D3 = DDD. Show all your work.

2. Based on the last example, complete the following statement:

Let D be a diagonal n× n matrix, i.e. D =


a11 0 0 · · · 0
0 a22 0 · · · 0
...

. . .
...

0 0 · · · ann

. Then Dk =


ak11 0 0 · · · 0
0 ak22 0 · · · 0
...

. . .
...

0 0 · · · aknn

.

Theorem Let A be an n× n matrix that is similar to a diagonal matrix D. Then Ak = PDkP−1.
[Proof on next page.]

Ex: Given A =

[
5 2

−3 −2

]
, D =

[
4 0
0 −1

]
, and P =

[
−2 1
1 −3

]
,

(a). Verify that A and D are similar by showing that AP = PD and verify that P is invertible.

(b). Use the theorem to compute A5
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(c). After finding P−1 and easily computing D5, you only needed to do 2 matrix multiplications (P 1⃝D5 2⃝P−1)
instead of 4 if computing A5 directly without the theorem (A 1⃝A 2⃝A 3⃝A 4⃝A).
If you computed A100 directly you would perform 99 matrix multiplications, but using the theorem
you would still only use 2 . Can you see the computational advantage? (rhetorical)

Proof Let A be an n× n matrix that is similar to a diagonal matrix D.

That is, A = PDP−1 for some invertible matrix P . [Show Ak = PDkP−1.]

Basis (k = 2):

A2 = AA

= (PDP−1)(PDP−1)

= (PD)(P−1P )(DP−1)

= (PD)(I)(DP−1)

= (PD)(DP−1)

= P (DD)P−1

= PD2P−1 √

Induction: Assume true for k = n (i.e An = PDnP−1 ). [Show true for k = n+ 1.]

An+1 = AnA

= (PDnP−1) (PDP−1) by the induction assumption.

= (PDn)(P−1P )(DP−1)

= PDn(I)DP−1

= PDnDP−1

= PDn+1P−1

Thus, it is true for k = n+ 1.

Therefore, by induction it is true for all k ≥ 2 . [Note: It is true for k = 1 by the definition of similarity.] �

Def An n×n matrix A is said to be diagonalizable if there exists and invertible matrix P and a diagonal matrix
D such that A = PDP−1.

But how do we actually diagonalize a matrix A? i.e. How do we find the matrices P and D? (rhetorical)
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Theorem The Diagonalization Theorem
An n× n matrix A is diagonalizable if and only if A has n linearly independent eigenvectors.

Proof Let A be an n× n matrix.

=⇒: Let A be diagonalizable . [Show that A has n linearly independent eigenvectors.]

Then A = PDP−1 for a diagonal matrix D and an n× n matrix P .

⇒ AP = PD by matrix multiplication and simplification.

Since A and D are similar , the they have the same eigenvalues.

Hence the diagonal entries of D are the eigenvalues of A.

i.e. D =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn


Let v1,v2, . . . ,vn be the columns of P . That is P = [v1 v2 . . . vn].

Then AP = A[v1 v2 . . . vn] = [ Av1 Av2 . . . Avn ].

And PD = [v1 v2 . . . vn]


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn

 = [λ1v1 λ2v2 . . . λnvn]

Since these two products are equal (i.e. AP = PD), we have Av1 = λ1v1, Av2 = λ2v2, . . . , Avn = λnvn. (∗)
[Before we can claim that these vectors are eigenvectors of A, we must show that they are nonzero .]

Since P is invertible , the Invertible Matrix Theorem says that the columns v1,v2, . . . ,vn form a
linearly independent set.

Then all the vectors v1,v2, . . . ,vn are nonzero, otherwise they would be dependent .

Therefore, by (∗), v1,v2, . . . ,vn are n eigenvectors of A, which are linearly independent .

⇐=: Let A have n linearly independent eigenvectors. [Show that A is diagonalizable. ]

Finish later as homework.
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The previous proof shows us how to find P and D and thus diagonalize A. Complete the following corollary based
on your work from the proof of the Diagonalization Theorem.

Corollary A matrix A is similar to a diagonal matrix D (i.e. A = PDP−1) if and only if the columns of P are n
linearly independent eigenvectors of A. Furthermore, the diagonal entries of D are the eigenvalues
of A corresponding, respectively, to the eigenvectors in P .

Ex: Given that A is factored into the form PDP−1 below, use the corollary above to determine the eigenvalues
of A and a basis for each eigenspace without performing any work.

A =

1 3 0
3 1 0
0 0 −2

 =

1 1 0
1 −1 0
0 0 1

4 0 0
0 −2 0
0 0 −2

1/2 1/2 0
1/2 −1/2 0

0 0 1



λ = 4 with basis:


11
0


λ = −2 with basis:


 1
−1
0

 ,

00
1



Homework: Finish proof, p. 4
Section 5.1, p. 271: #15, 19, 20, 21, 25, 27
Section 5.2, p. 279: #15, 17, 18, 21, 23, 24
Section 5.3, p. 286: #2, 3, 5


