1. Given
$$A = \begin{bmatrix} 2 & 1 \\ 4 & -1 \end{bmatrix}$$

(a). For $\mathbf{u} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$, compute Au. Sketch u and the resulting image Au on the same set of axes.

(b). For $\mathbf{v} = \begin{bmatrix} 1 \\ -4 \end{bmatrix}$, compute $A\mathbf{v}$. Sketch \mathbf{v} and the resulting image $A\mathbf{v}$ on the same set of axes.

(c). What, if anything, do you notice special about either of these cases?

 $\underline{\text{D}_{\text{EF}}}$ Let A be an _____ matrix.

- An _____ of A is a scalar λ such that $A\mathbf{x} = \lambda \mathbf{x}$ has a nontrivial solution \mathbf{x} .
- An _____ of A is a nonzero vector \mathbf{x} such that $A\mathbf{x} = \lambda \mathbf{x}$ for some scalar λ (the eigenvalue).

<u>NOTE</u>: We say \mathbf{x} is the eigenvector associated with λ .

In the above example, $\lambda = -2$ is the eigenvector with eigenvector $\mathbf{v} = \begin{vmatrix} 1 \\ -4 \end{vmatrix}$

2. Show that $\mathbf{w} = \begin{bmatrix} 3 \\ 3 \end{bmatrix}$ is an eigenvector of A and determine the eigenvalue.

Question (rhetorical): Are $\lambda = -2, 3$ and $\mathbf{v} = \begin{bmatrix} 1 \\ -4 \end{bmatrix}$ and $\mathbf{w} = \begin{bmatrix} 3 \\ 3 \end{bmatrix}$ the only eigenvalues and eigenvectors of A? [Let's see on the next page.]

- \Rightarrow By subtracting:
- \Rightarrow Factor: ______ where I is the ______ identity matrix.
- \Rightarrow By the IMT, this equation will have a nontrivial solution if the matrix $A \lambda I$ is ______.

 $\Rightarrow \det(A - \lambda I) =$ (also by the IMT).

Steps for finding eigenvalues:

- (1). Find and simplify the matrix $A \lambda I$.
- (2). Compute $det(A \lambda I)$
- (3). Set $det(A \lambda I) = 0$ and solve for λ .
- **3.** Find the eigenvalues $A = \begin{bmatrix} 2 & 1 \\ 4 & -1 \end{bmatrix}$
- (1). $A \lambda I = \begin{bmatrix} 2 & 1 \\ 4 & -1 \end{bmatrix} -$ (2). $|A - \lambda I| = \begin{vmatrix} & & \\ & & \end{vmatrix} =$
- **(3)**.

So the _____ eigenvalues are $\lambda =$ ____.

<u>DEF</u> The scalar equation $det(A - \lambda I) = 0$ is called the ______.

<u>THEOREM</u> A scalar λ is an eigenvalue of an $n \times n$ matrix A iff λ satisfies the characteristic equation det $(A - \lambda I) = 0$.

<u>NOTE</u>: For an $n \times n$ matrix A, the characteristic equation is an ______ -order polynomial (______) and has exactly n roots if you count repeated roots and complex roots.

<u>DEF</u> The multiplicity of an eigenvalue λ is the number of times λ is a root of the characteristic equation.

4. Find the eigenvalues
$$A = \begin{bmatrix} 2 & 3 & 0 & 1 \\ 0 & 1 & 2 & 2 \\ 0 & 0 & -4 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 and state their multiplicity.

5. Based on the last problem, complete the following theorem about triangular matrices.

_____·

<u>THEOREM</u> The eigenvalues of an $n \times n$ triangular matrix are

(Proof – to be done as homework)

QUESTION: Now that we know how to find the eigenvalues, how do we find the associated eigenvectors?

Eigenvectors are nonzero solutions to $A\mathbf{x} = \lambda \mathbf{x}$, which is equivalent to

 \Rightarrow Find the nontrivial solutions to $(A - \lambda I)\mathbf{x} = \mathbf{0}$

Steps for finding eigenvectors:

- (1). Find and simplify $A \lambda I$
- (2). Use row reduction to find the nontrivial solutions to $(A \lambda I)\mathbf{x} = \mathbf{0}$.

6. Back to the first matrix $A = \begin{bmatrix} 2 & 1 \\ 4 & -1 \end{bmatrix}$, find the eigenvector(s) associated with $\lambda = 3$.

(1). A - 3I =

(2).

7. Find the eigenvector(s) associated with $\lambda = -2$.

8. Did you get the same eigenvectors from before?

9. Are the eigenvectors unique? Why or why not?

Homework: Explain in your own words what the Null Space of a matrix A is. Proof on p.3 Section 5.1, p. 271: #1, 4, 7, [9, 10, 11 *Note*], 17, 23, 24 Section 5.2, p. 279: #3, 8, 9, 13, 20