1. Find the inverse of $A = \begin{bmatrix} 1 & 3 & 0 \\ -1 & -4 & 1 \\ 2 & 0 & 12 \end{bmatrix}$, if it exists.

$$\longrightarrow \begin{bmatrix} 1 & 0 & 3 & 4 & 3 & 0 \\ 0 & 1 & -1 & -1 & -1 & 0 \\ 0 & 0 & 1 & -4/3 & -1 & 1/6 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & 0 & 8 & 6 & -1/2 \\ 0 & 1 & 0 & -7/3 & -2 & 1/6 \\ 0 & 0 & 1 & -4/3 & -1 & 1/6 \end{bmatrix}$$

$$So A^{-1} = \begin{bmatrix} 8 & 6 & -1/2 \\ -7/3 & -2 & 1/6 \\ -4/3 & -1 & 1/6 \end{bmatrix}$$

But why does this method work? [Rhetorical Question... By the end of this worksheet, you will have proved why it works.]

 $\underline{\text{DEF}}$ An **elementary matrix** E is one that is obtained by performing _____ on the Identity matrix.

Ex

$$I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad R_2 \leftrightarrow R_3 \qquad \Rightarrow \quad \text{Elementary Matrix } E_1 =$$

$$I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad 3R_1 \leftrightarrow R_1 \qquad \Rightarrow \quad \text{Elementary Matrix } E_2 =$$

$$I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad -2R_3 + R_2 \leftrightarrow R_2 \quad \Rightarrow \quad \text{Elementary Matrix } E_3 =$$

 $\underline{\underline{\mathrm{EX}}}\text{: Given a general } 3 \times 3 \text{ matrix } A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \text{ and the three elementary matrices defined above, compute the following products.}$

(a).
$$E_1 A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$$

(b).
$$E_2A = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$$

(c).
$$E_3A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$$

[Go on to answer the next two questions (any maybe start filling in the blanks of the Facts and Proof).]

Which elementary row operation transforms A into the resulting E_1A, E_2A, E_3A , respectively?

How do these elementary rov	,		
	· · ·		can be written as the produc
on the identity matrix I_m .			ıld be clear from previous example
$\overline{\text{FACT}}$ Each elementary matrinecessary to take E back to the identity		w/o proof – but E^{-1} is clearly	found by performing the operation
necessary to take 12 back to the it	ichity 1.		
Theorem An $n \times n$ matrix	is invertible if and only if A	•	
	is invertible if and only if A	•	Show that it is row equivalent to I
Theorem An $n \times n$ matrix	is invertible if and only if A	[8	Show that it is row equivalent to I the unique RREF is
Theorem An $n \times n$ matrix	is invertible if and only if A	i.e. Show that	the unique RREF is
Theorem An $n \times n$ matrix PROOF ⇒: Let A be an	is invertible if and only if A $n \times n \text{ matrix}$ $\mathbb{R}^n, A\mathbf{x} = \mathbf{b} \text{ has a (unique) s}$	i.e. Show that olution (by Theorem	the unique RREF is
Theorem An $n \times n$ matrix PROOF \Rightarrow : Let A be an	is invertible if and only if A	i.e. Show that olution (by Theorem	the unique RREF is
Theorem An $n \times n$ matrix PROOF \Rightarrow : Let A be an Then for each in Thus, A has a	is invertible if and only if A	i.e. Show that olution (by Theorem	the unique RREF is

Note: From the previous proof, we saw that the	e sequence of row operations that reduce A to I can be written
in the product form	for the elementary matrices E_1, E_2, \ldots, E_p corresponding to the
row operations in order $1, 2, \ldots, p$.	

COROLLARY If A is an invertible $n \times n$ matrix, then any sequence of elementary row operations that reduces A to I_n will also transform I_n to A^{-1} .

<u>Proof</u> Since A is invertible, we have by the previous theorem that A =

for some set of elementary matrices corresponding to a sequence of elementary row operations.

Taking the inverse of both sides

$$\begin{array}{rcl} A^{-1} &=& \left((E_p\cdots E_2E_1)^{-1}\right)^{-1} \\ \Rightarrow &=& \text{since the inverse of an inverse matrix returns the original matrix.} \end{array}$$

Since multiplying by the identity I_n does not change the matrix, multiply the RHS by I_n to obtain

$$=(E_n\cdots E_2E_1)I_n.$$

In other words, the same sequence of elementary row operations applied in the order ______, which reduce A to I_n will reduce I_n to ______. \blacksquare

 $[\underline{\text{Note}} \text{: This corollary proves why } [A|I] \ \to \ [I|A^{-1}].$