1. Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. T is one-to-one if and only if $T(\mathbf{x}) = \mathbf{0}$ has only the trivial solution. PROOF Let T be defined as above. \implies : Let T be one-to-one. [Show that $T(\mathbf{x}) = \mathbf{0}$ has ______.] By definition of one-to-one, if **b** is in \mathbb{R}^m , then there is at most one solution **x** in \mathbb{R}^n such that Specifically, since the zero vector $\mathbf{0}$ is in _____ and T is one-to-one, there is ______ solution ${\bf x}$ in \mathbb{R}^n such that _____ . [By the definition of one-to-one] Since T is linear, _____ is always a solution to $T(\mathbf{x}) = \mathbf{0}$. i.e. $T(\mathbf{0}) = \mathbf{0}$. Since there is _____ solution, $\mathbf{x} = \mathbf{0}$ is the *only* solution. \Leftarrow : Let $T(\mathbf{x}) = \mathbf{0}$ have only the trivial solution. [Show that T is one-to-one.] BWOC, suppose ______. Then there exists a vector \mathbf{b} in \mathbb{R}^m and two _______ vectors \mathbf{u} and \mathbf{v} such that $T(\mathbf{u}) = \mathbf{b}$ and $T(\mathbf{v}) = \mathbf{b}$. Then $$T(\mathbf{u} - \mathbf{v}) = \underline{\qquad \qquad }$$ since T is linear. $= \mathbf{b} - \mathbf{b}$ $= \mathbf{0}$ i.e. $T(\mathbf{u} - \mathbf{v}) = \mathbf{0}$, which has only the _____ solution [by the given statement (see \Leftarrow :)]. So $\mathbf{u} - \mathbf{v} = \mathbf{0}$ is this trivial solution. **⇒**______-× Therefore, T must be one-to-one. | 2. Le | et $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation defined as $T(\mathbf{x}) = A\mathbf{x}$. Then | |--------------|--| | (a). | T maps \mathbb{R}^n onto \mathbb{R}^m iff the columns of A span \mathbb{R}^m . | | (b). | T is one-to-one iff the columns of A are linearly independent. | | Pro | OF Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation defined as $T(\mathbf{x}) = A\mathbf{x}$ | | (a). | By a previous theorem (sec 1.4), | | | the columns of A span \mathbb{R}^m iff for the equation $A\mathbf{x} = \mathbf{b}$ has a (i.e. at least one solution). | | | But since $A\mathbf{x} = \mathbf{b}$ is equivalent to the equation, the statement becomes: | | | The columns of A span \mathbb{R}^m iff for each \mathbf{b} in \mathbb{R}^m the equation has at least one solution. | | | Therefore, by definition of, T is onto \mathbb{R}^m iff the columns of A span \mathbb{R}^m . | | (b). | From sec. 1.7, the columns of A are linearly independent iff $A\mathbf{x} = 0$ has | | | \Rightarrow The columns of A are linearly independent iff has only the trivial solution. | | | From the previous theorem, T is iff $T(\mathbf{x}) = 0$ has only the trivial solution. | | | Therefore, combining the last 2 statements: | | | T is one-to-one iff the columns of A are |