1. Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. T is one-to-one if and only if $T(\mathbf{x}) = \mathbf{0}$ has only the trivial solution.

PROOF Let T be defined as above.

 \implies : Let T be one-to-one.

[Show that $T(\mathbf{x}) = \mathbf{0}$ has ______.]

By definition of one-to-one, if **b** is in \mathbb{R}^m , then there is at most one solution **x** in \mathbb{R}^n such that

Specifically, since the zero vector $\mathbf{0}$ is in _____ and T is one-to-one,

there is ______ solution ${\bf x}$ in \mathbb{R}^n such that _____ . [By the definition of one-to-one]

Since T is linear, _____ is always a solution to $T(\mathbf{x}) = \mathbf{0}$. i.e. $T(\mathbf{0}) = \mathbf{0}$.

Since there is _____ solution, $\mathbf{x} = \mathbf{0}$ is the *only* solution.

 \Leftarrow : Let $T(\mathbf{x}) = \mathbf{0}$ have only the trivial solution.

[Show that T is one-to-one.]

BWOC, suppose ______.

Then there exists a vector \mathbf{b} in \mathbb{R}^m and two _______ vectors \mathbf{u} and \mathbf{v} such that $T(\mathbf{u}) = \mathbf{b}$ and $T(\mathbf{v}) = \mathbf{b}$.

Then

$$T(\mathbf{u} - \mathbf{v}) = \underline{\qquad \qquad }$$
 since T is linear.
 $= \mathbf{b} - \mathbf{b}$
 $= \mathbf{0}$

i.e. $T(\mathbf{u} - \mathbf{v}) = \mathbf{0}$, which has only the _____ solution [by the given statement (see \Leftarrow :)].

So $\mathbf{u} - \mathbf{v} = \mathbf{0}$ is this trivial solution.

⇒______-×

Therefore, T must be one-to-one.

2. Le	et $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation defined as $T(\mathbf{x}) = A\mathbf{x}$. Then
(a).	T maps \mathbb{R}^n onto \mathbb{R}^m iff the columns of A span \mathbb{R}^m .
(b).	T is one-to-one iff the columns of A are linearly independent.
Pro	OF Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation defined as $T(\mathbf{x}) = A\mathbf{x}$
(a).	By a previous theorem (sec 1.4),
	the columns of A span \mathbb{R}^m iff for the equation $A\mathbf{x} = \mathbf{b}$ has a (i.e. at least one solution).
	But since $A\mathbf{x} = \mathbf{b}$ is equivalent to the equation, the statement becomes:
	The columns of A span \mathbb{R}^m iff for each \mathbf{b} in \mathbb{R}^m the equation has at least one solution.
	Therefore, by definition of, T is onto \mathbb{R}^m iff the columns of A span \mathbb{R}^m .
(b).	From sec. 1.7, the columns of A are linearly independent iff $A\mathbf{x} = 0$ has
	\Rightarrow The columns of A are linearly independent iff has only the trivial solution.
	From the previous theorem, T is iff $T(\mathbf{x}) = 0$ has only the trivial solution.
	Therefore, combining the last 2 statements:
	T is one-to-one iff the columns of A are