A matrix with only one column is called a ____(column) vector ____ and denoted $\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix}$ (i.e. $n \times 1$ matrix)

 $\underline{\mathbf{E}\mathbf{x}}$:

The entries can be written as ____ an ordered list (u_1, u_2, \ldots, u_n) called an n-tuple.

 $\underline{\mathbf{E}\mathbf{x}}$:

 \mathbb{R}^n (i.e. *n*-dimensional space) is the set of all *n*-tuples where each entry is in \mathbb{R} .

 $\underline{\text{Ex}}$: n=2: (u_1,u_2) is an ordered pair and defines a point in $\underline{\mathbb{R}^2}$ (i.e. the plane).

Ex: n = 3: (u_1, u_2, u_3) is an ordered triple and defines a point in \mathbb{R}^3 (i.e. 3D-space).

Graphical Representations of vectors in \mathbb{R}^2 and \mathbb{R}^3 .

 $\mathbf{u} = \begin{bmatrix} a \\ b \end{bmatrix}$ can be represented by a line segment w/ an arrow from the origin to the point (a,b). But it can be drawn anywhere in the plane with the same direction and length. Similar for \mathbb{R}^3 .

Addition of two vectors: Add corresponding entries
$$\mathbf{u} + \mathbf{v} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix} + \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} = \begin{bmatrix} u_1 + v_1 \\ u_2 + v_2 \\ \vdots \\ u_n + v_n \end{bmatrix}$$

Examples and Graphical Representations

Scalar Multiplication ($c \in \mathbb{R}$ is a scalar): Multiply each element by c. $c\mathbf{u} = c \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix} = \begin{bmatrix} cu_1 \\ cu_2 \\ \vdots \\ cu_n \end{bmatrix}$

Examples and Graphical Representations

Properties for vectors \mathbf{u}, \mathbf{v} , and \mathbf{w} in \mathbb{R}^n and scalars $c, d \in \mathbb{R}$.

1.
$$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$

5.
$$c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$$

2.
$$(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$$

6.
$$(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$$

3.
$$u + 0 = 0 + u = u$$

7.
$$c(d\mathbf{u}) = (cd)\mathbf{u}$$

4.
$$\mathbf{u} + (-\mathbf{u}) = -\mathbf{u} + \mathbf{u} = \mathbf{0}$$

8.
$$1u = u$$