Quiz 3

25 October 2017

Books and notes (in any form) are not are allowed. You may use a calculator – but you must clearly show your set-up for the problem. Please also indicate when you use the matrix functions on the calculator. Show all other work for credit. Good luck! [Note: Each quiz score will be scaled to 15 points after grading.]

1. (5 pts) Given the following system of equations, use Cramer's Rule to solve for x_3 only.

 $\begin{vmatrix} a & b & c \\ d & e & f \\ a & h & i \end{vmatrix} = 4,$ find the following determinant. 2. (3 pts) Given the following determinant:

3. (4 pts) Let U be a square matrix such that $U^TU = I$. Show that $\det U = \pm 1$.

$$det(u^{\dagger}u) = det(I)$$

$$det(u^{\dagger})det(u) = 1$$

$$det(u) det(u) = 1$$

$$(det u)^{2} = 1$$

$$det(u) = 1$$

by properties & determinant since det (ut) = det(u)

- 4. (3 pts) Determine if the following statements are True or False. [No explanation necessary.]
- (a). det(AB) = det(A) det(B) for all matrices A and B for which the product AB is defined

Folse. A and B must be square
matrices for det A + det B to exist

Countering A: [073] B= [20] AB= [51]

(b). Suppose A is a square matrix such that $\det A^3 = 0$, then A is not invertible.

t det $A^3 = 0$, then A is not invertible.

But det A + det B:

are not defined

True

 $det(A^3) = (det A)^2 = 0$ => det A = 0=> A is not movertible