Name: _

Math 362 Linear Algebra – Crawford

Books and notes (in any form) are <u>not</u> are allowed. You may use a calculator – but you must clearly show your set-up for the problem. Please also indicate when you use the matrix functions on the calculator. Show all other work for credit. *Good luck!* [Note: Each quiz score will be scaled to 15 points after grading.]

1. (6 pts) Let
$$A = \begin{bmatrix} 1 & -2 \\ 0 & 4 \\ 3 & -1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 2 & 0 & -1 \\ 2 & 3 & 4 \end{bmatrix}$.

(a). Compute $(2I_3)A$ or explain why it is undefined.

(b). Compute $B^T - 2A$ or explain why it is undefined.

2. (3 pts) Let $B = \begin{bmatrix} 2 & -1 \\ -6 & 3 \end{bmatrix}$. Construct a 2 × 2 matrix A that contains no zero entries, such that AB is the zero matrix.

3. (7 pts) Given
$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ -4 \\ 2 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} -2 \\ 2 \\ -3 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} 2 \\ h \\ 4 \end{bmatrix}$,

(a). Find all value(s) of h for which the vectors are linearly dependent. Show work to justify your answer.

(b). TRUE or FALSE: Part (a) is equivalent to asking "For what value(s) of h is \mathbf{v}_3 in the Span $\{\mathbf{v}_1, \mathbf{v}_2\}$?" [No explanation necessary.]

4. (5 pts) Prove: If a set $S = {\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p}$ in \mathbb{R}^n contains the zero vector, then the set is linearly dependent.