Triangles

1. Given that $x = 5 \tan \theta$, sketch right triangle involving θ and label all the sides. Then determine expressions for all 6 trigonometric functions of θ .

$$\sin \theta = \qquad \qquad \csc \theta =$$
$$\cos \theta = \qquad \qquad \sec \theta =$$
$$\tan \theta = \frac{x}{5} \qquad \qquad \cot \theta =$$

2. Given the following information, sketch and label a right triangle involving θ . In each case, write down the resulting radical expression ($\sqrt{-}$) that appears on one of the sides.

Given	Triangle	$\underline{\text{Radical Expression } (\sqrt{})}$
(a). $x = a \sin \theta$		

(b). $x = a \tan \theta$

(c).
$$x = a \sec \theta$$

(d).
$$x = \frac{a}{b}\sin\theta$$

(e).
$$x = \frac{a}{b} \tan \theta$$

(f).
$$x = \frac{a}{b} \sec \theta$$

Triangles

3. Use the given substitution to rewrite the given radical expression in terms of trigonometric functions. Then simplify as much as possible using trig identities.

[Helpful identities for simplifying: $\cos^2 \theta + \sin^2 \theta = 1$ and $1 + \tan^2 \theta = \sec^2 \theta$.]

(a). Use
$$x = 5 \tan \theta$$
 to rewrite $\frac{x}{\sqrt{x^2 + 25}}$ Then simplify.

(b). Use
$$x = a \sin \theta$$
 to rewrite $x^3 \sqrt{a^2 - x^2}$

(c). Use
$$x = \frac{a}{b} \sec \theta$$
 to rewrite $\sqrt{b^2 x^2 - a^2}$ Then simplify.

4. Determine which substitution is appropriate for rewriting and simplifying the following expressions. [Hint: Look at the results of Problem #2.] Do not actually simplify – just state which substitution to make.

(a).
$$x^2\sqrt{x^2+1}$$
 (b). $\sqrt{x^2-7}$ (c). $\frac{1}{x^2\sqrt{9-16x^2}}$

5. Consider a circle with radius a, i.e. $x^2 + y^2 = a^2$.

- (a). Sketch the top half of this circle in the xy-plane.Shade the area bounded by this semi-circle and the x-axis.
- (b). What is the equation (function) for this top half of the circle.

y =

(c). Set up, but do not evaluate, the integral to find the area of this shaded region.

Then simplify.