THE TEST FOR DIVERGENCE

If $\lim a_n \neq 0$, then the series $\sum a_n$ diverges by Test for Divergence.

<u>Note</u>

If $\lim a_n = 0$, not enough info yet \Rightarrow More Work! [Use another test to determine whether $\sum a_n$ converges or diverges.]

 $\frac{\text{The }p\text{-Series Test}}{\text{The series }\sum \frac{1}{n^p} \text{ converges if } p > 1 \text{ and diverges for } p \leq 1.$

The Geometric Series Test

The series $\sum ar^n$ converges if |r| < 1 and diverges for $|r| \ge 1$.

[Use algebra to write in this form.]

STEPS FOR USING THE LIMIT COMPARISON TEST (for series with positive terms)

- **1.** Let b_n be the leading order terms of a_n (w/o coefficients). Determine whether $\sum b_n$ converges or diverges.
- **2.** Compute $\lim_{n \to \infty} \frac{a_n}{b_n} = c$ and verify that it is *nonzero* and *finite*.
- 3. Then since $\sum b_n$ is a converging/(or diverging) <u>p-, geom., etc.</u> series, the series $\sum a_n$ converges/(or diverges) by the Limit Comparison Test.

STEPS FOR USING THE COMPARISON TEST (for series with positive terms)

1. Look at leading order terms of a_n to find b_n . Determine whether $\sum b_n$ converges or diverges. [May need to consider bounds on sine or cosine.]

2. Establish the correct inequality:

(a). If $\sum b_n$ converges, need $0 \le a_n \le b_n$ [May need to adjust b_n by multiplying/dividing

(b). If $\sum b_n$ diverges, need $0 \le b_n \le a_n$

3.

3.

Since $\sum b_n$ is a converging/(or diverging) <u>p-, geom., etc.</u> series and $a_n \leq b_n$ /(or $b_n \leq a_n$), the series $\sum a_n$ converges/(or diverges) by the Comparison Test.

STEPS FOR USING THE ALTERNATING SERIES TEST

1. Compute $\lim_{n \to \infty} b_n$

2. Verify that b_n 's are (eventually) positive and decreasing.

[If not, must use another test]

by a number to get \leq in the right place.]

For series of the form: $\sum a_n = \sum (-1)^n b_n$

Since b_n is positive and decreasing and $\lim b_n = 0$, the series $\sum a_n$ converges by the Alternating Series Test.

Note: If $\lim b_n \neq 0$, the series $\sum a_n$ diverges by Test for Divergence.

STEPS FOR USING THE RATIO TEST

1. Compute $L = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$

2.

Since L < 1/ (or L > 1), the series $\sum a_n$ converges absolutely/(or diverges) by the Ratio Test.

Note: If L = 1, the test fails \Rightarrow must use another test.

STEPS FOR USING THE ROOT TEST

1. Compute $L = \lim_{n \to \infty} \sqrt[n]{|a_n|} = \lim_{n \to \infty} |a_n|^{1/n}$

2.

Since L < 1/ (or L > 1), the series $\sum a_n$ converges absolutely/(or diverges) by the Root Test.

Note: If L = 1, the test fails \Rightarrow must use another test.

STEPS FOR USING THE INTEGRAL TEST

1. Verify that $a_n = f(n)$ is (eventually) continuous, positive, and decreasing.

2. Evaluate the improper integral $\int_{1}^{\infty} f(x) dx = \begin{cases} \text{finite number} \Rightarrow \text{converges} \\ \infty \Rightarrow \text{diverges} \end{cases}$

3.

Since the integral converges/(or diverges), the series $\sum a_n$ converges/(or diverges) by the Integral Test.

STEPS FOR DETERMINING ABSOLUTE AND CONDITIONAL CONVERGENCE

- 0. If possible, use the Root or Ratio Test and get the result "for free".
- **1.** If those tests are not suitable, use any other test for the series $\sum |a_n|$.
- (a). If $\sum |a_n|$ converges, then $\sum a_n$ converges absolutely.
- (b). If $\sum |a_n|$ diverges, then no info **yet** about $\sum a_n \Rightarrow$ Use any test for the original series $\sum a_n$.
 - (i). If $\sum a_n$ converges (& $\sum |a_n|$ diverges), then $\sum a_n$ converges conditionally.
 - (ii). If $\sum a_n$ diverges (& $\sum |a_n|$ diverges), then $\sum a_n$ diverges.