Name: ______ Math 152, Calculus II – Crawford

	Score	
	1	/8
	2	/30
 Calculators, books, or notes (in any form) are <u>not</u> allowed. You may use the given formula sheet. 	3	/12
• Clearly indicate your answers.	4	/22
 Show all your work – partial credit may be given for written work. Good Luck! 	5	/10
	6	/12
	7	/10
	Total	/100

1. (8 pts). How many terms are needed to approximate the following infinite series with an error less than 0.01? $\sum_{n=1}^{\infty} (-1)^n \frac{4}{n!},$

 $Helpful \ values: \ 0! = 1, \ 1! = 1, \ 2! = 2, \ 3! = 6, \ 4! = 24, \ 5! = 120, \ 6! = 720, \ 7! = 5040, \ 8! = 40320, \ 9! = 362880, \ 10! = 3628800$

2. (30 pts). Determine whether the following series converge or diverge. [Show all your work and clearly indicate any tests that you use.]

(a).
$$\sum_{n=1}^{\infty} \left(\frac{3n-2n^2}{1+n^2} \right)^{3n}$$

[Continued on next page. \longrightarrow]

(c).
$$\sum_{n=1}^{\infty} \frac{4 + \sin n}{n^2}$$

3. (12 pts). Determine whether the following series <u>converges absolutely</u>, <u>converges conditionally</u>, or <u>diverges</u>.[Show all your work and clearly indicate any tests that you use.]

$$\sum_{n=2}^{\infty} (-1)^n \frac{1}{n \ln n}$$

4. (22 pts). Find the <u>radius</u> of convergence and <u>interval</u> of convergence for the following series.

(a).
$$\sum_{n=0}^{\infty} \frac{4n^2}{n!} x^n$$

(b).
$$\sum_{n=0}^{\infty} \frac{(2x-1)^n}{3n+2}$$

5. (10 pts). Use the <u>definition</u> of Taylor Series $f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n$ to derive the expansion of $f(x) = 3^x$ centered at $\underline{\mathbf{a}} = \underline{\mathbf{1}}$. Recall $\frac{d}{dx} [b^x] = b^x \ln b$

[Write your final answer in concise summation notation and simplify. Do <u>not</u> find the radius or interval of convergence.]

- 6. (12 pts). [For this problem, I highly recommend that you use the expanded form of the series.]
- (a). Use a known Maclaurin Series to obtain the Maclaurin Series for $f(x) = \frac{3x 3\tan^{-1}x}{x^3}$. [You <u>must simplify your answer before answering part (b).</u>]

(b). Use the (simplified) series obtained in part (a) to evaluate the following integral [Show at least 3 nonzero terms in your answer.]

 $\int \frac{3x - 3\tan^{-1}x}{x^3} \, dx.$

(a). T F
$$\sum_{n=0}^{\infty} 4\left(\frac{3}{2}\right) = \frac{4}{1-3/2} = -8.$$

(b). T F If
$$\lim_{k \to \infty} s_k = -3$$
, then $\sum_{n=1}^{\infty} a_n$ converges, but not necessarily to -3 .
Note: $s_k = \sum_{n=1}^k a_n$ is the k^{th} partial sum of the infinite series $\sum_{n=1}^{\infty} a_n$.

(c). T F If
$$\sum_{n=1}^{\infty} c_n x^n$$
 converges for $x = 3$, but diverges for $x = -5$, then it must converge for $x = -1$.

(d). T F If
$$\sum_{n=1}^{\infty} c_n x^n$$
 converges for $x = 3$, but diverges for $x = -5$, then it must converge for $x = -3$.

(e). T F
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{3^n}{n} = \ln 4.$$