Given the graph of $f(x) = \sin x$, is it one-to-one?

Given the graph of
$$f(x) = \sin x$$
, is it one-to-one?

$$\begin{array}{c}
\frac{\pi}{2} \\
\frac{3\pi}{8} \\
\frac{3\pi}{8$$

By definition of inverse functions:
$$\sin^{-1}(x) = y \iff \sin y = x$$
 for $y \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
i.e. $\sin^{-1}x$ returns the number between $-\frac{\pi}{2}$ and $\frac{\pi}{2}$ whose sine is x .

$$\underline{\mathbf{Ex}}\,\sin^{-1}\left(-\frac{\sqrt{3}}{2}\right) = -\frac{\pi}{3} \qquad \text{NOT} \qquad \frac{4\pi}{3}, \frac{5\pi}{3}, \text{ etc.}$$

$$\underline{\mathbf{Ex}} \operatorname{arcsin}\left(\tan\frac{\pi}{4}\right) = \frac{\operatorname{arcsin}(1)}{2}$$

CANCELLATION EQUATIONS

$$\sin^{-1}(\sin x) = x \qquad \text{if } -\frac{\pi}{2} \le x \le \frac{\pi}{2}$$
$$\sin(\sin^{-1} x) = x \qquad \text{if } -1 \le x \le 1$$

$$\underline{\mathbf{Ex}} \sin^{-1} \left(\sin \frac{\pi}{4} \right) = \frac{\pi}{4}$$
 by the cancellation equations.

$$\underline{\mathbf{Ex}} \, \sin^{-1}\left(\sin\frac{5\pi}{4}\right) \neq \frac{5\pi}{4} \qquad \qquad \text{BUT}$$

since $\frac{5\pi}{4}$ is not in $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

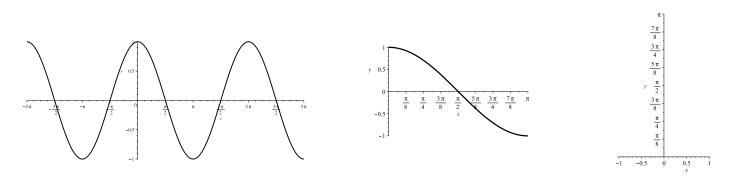
$$\underline{\mathbf{Ex}} \sin\left(\sin^{-1}\frac{1}{2}\right) = \frac{1}{2}$$
 by the cancellation equations

OR
$$\sin^{-1}\left(\sin\frac{\pi}{4}\right) = \sin^{-1}\left(\frac{\sqrt{2}}{2}\right) = \frac{\pi}{4}$$
 by work.

$$\sin^{-1}\left(\sin\frac{5\pi}{4}\right) = \sin^{-1}\left(-\frac{\sqrt{2}}{2}\right) = -\frac{\pi}{4}$$
$$\operatorname{since} -\frac{\pi}{4} \text{ is in } \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$$

 $\sin\left(\sin^{-1}\frac{1}{2}\right) = \sin\left(\frac{\pi}{6}\right) = \frac{1}{2}$ by work. OR

Similarly for $f(x) = \cos x$, restrict the domain to $[0, \pi]$



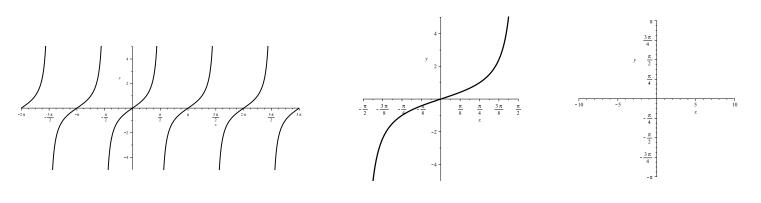
CANCELLATION EQUATIONS

$\cos^{-1}(\cos x) = x$	$ \text{if } \ 0 \leq x \leq \pi \\$

$\cos(\cos^{-1}x) = x \qquad \text{if } -1 \le x \le 1$

Similarly for $f(x) = \tan x$, restrict the domain to $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

and note that the range is $(-\infty, \infty)$.



Domain: Range:

CANCELLATION EQUATIONS

 $\tan^{-1}(\tan x) = x \qquad \text{if } -\frac{\pi}{2} \le x \le \frac{\pi}{2}$ $\tan(\tan^{-1} x) = x \qquad \text{if } -\infty \le x \le \infty$

[See book for graphs of $\sec^{-1}(x), \csc^{-1}(x)$, and $\cot^{-1}(x)$]

 $\underline{\mathbf{Ex}}\,\tan^{-1}(\cos\pi)$

$$\underline{\mathbf{Ex}}\,\sin\left(\cos^{-1}-\frac{\sqrt{3}}{2}\right)$$

 $\underline{\mathbf{Ex}} \tan^{-1}(\tan \pi)$

 $\underline{\mathbf{Ex}}$ Find the exact value of

 $\cos\left(\arcsin\frac{3}{4}\right)$

<u>Ex</u> Write the following expression as an algebraic expression: $\sin(\tan^{-1} x)$