Final Exam Review

NEW MATERIAL: SECTION 10.1-10.3

- **1.** Given the parametric equations: $x = \ln t$, $y = 1 + t^2$,
- (a). Find dy/dx.

(b). Find d^2y/dx^2 .

- (c). Find the equation of the tangent line at the point (0,2).
- (d). Eliminate the parameter t to find the Cartesian equation of the curve. Express your answer in the form y = f(x).

2. Given the parametric curve: $x = \sin 2t$ $y = 4 \sin t$ on $0 \le t \le 2\pi$, find all the points where there is a horizontal or vertical tangent line. [You must show all work!]

3. Find the area of the region bounded by the parametric curve $x = 2 \cot \theta$, $y = 2 \sin^2 \theta$ for $0 < \theta < \pi$. [Be careful, the curve is traced out from right to left.]

4. Sec. 10.1 #28

5. For each of the polar coordinates $\left(-1, \frac{\pi}{3}\right)$ and $(2, 3\pi)$,

(a). Plot them in the polar coordinate system.

(b). Find the Cartesian coordinate.

6. Sec. 10.3 #54

7. Find a polar equation for the curve given by the Cartesian equation x + y = 2

8. Identify the curve by finding a Cartesian equation for the curve $r = 4 \sec \theta$

9. Find the slope of the tangent line to the polar curve $r = \sin 3\theta$ at $\theta = \frac{\pi}{6}$.

10. Find the points on the curve $r = 2\cos\theta$ where the tangent line is horizontal or vertical for $0 \le \theta < \pi$.

11. Find the <u>points</u> of intersection of the following curves. $r = \sin \theta$, $r = \sin 2\theta$. (Why is it sufficient to only consider the interval $[0, 2\pi]$?)

The remainder of this review covers material prior to Exam 3.

12. Use the geometric series to expand $f(x) = \frac{1}{1+2x}$ as a power series.

- **13.** For the function $f(x) = 1 + x + x^2$,
- (a). Find the Taylor Series for f(x) centered at a = 2.
- (b). Expand and simplify your answer to (a). Explain why this simplified expression makes sense.

14. Find the radius of convergence and the exact <u>interval</u> of convergence for the following series.

(a).
$$\sum_{n=1}^{\infty} \frac{(n+1)! (x-3)^n}{2^n}$$
 (b). $\sum_{n=1}^{\infty} (-1)^n \frac{(x+2)^n}{n2^n}$

15. Explain the Integral Test in your own words. Include sketches to illustrate how the series and the integral are related.

16. Find the \underline{SUM} of the following series or show that it diverges.

(a). $\sum_{n=0}^{\infty} \frac{2^{2n+1}}{5^n}$ (b). $\sum_{n=2}^{\infty} \left(\frac{1}{n+1} - \frac{1}{n}\right)$

17. Determine whether the following series diverge or converge.

(a).
$$\sum_{n=1}^{\infty} \frac{\sin n}{1+n^2}$$

(b).
$$\sum_{n=1}^{\infty} \frac{n^2+1}{n^3+1}$$
 (c).
$$\sum_{n=1}^{\infty} (-1)^n \frac{n^2+1}{n^3+1}$$

See old Review Sheets and Exam 3 for more practice.

18. Error bounds for alternating series and for series that converge by the Integral Test. [See Exam 3 Review Sheet.]

19. Determine whether the following sequences converge or diverge. Find the limit if it converges.

(a).
$$a_n = \frac{10^n}{9^{n+1}}$$
 (b). $a_n = \frac{2n^3 - 1}{3 + n^3}$

20. Find the derivative.

(a). $f(\theta) = e^{\sin 2\theta} + 3^{\theta}$ (b). $y = \sin^{-1}(x^2)$ (c). $y = \sinh x$ (d). $y = (\sin x)^{3x}$

21. Find the equation of the tangent line to $y = \log_3 x$ at x = 9.

22. Evaluate the following limits:

(a).
$$\lim_{x \to \infty} (1+2x)^{1/3x}$$
 (b). $\lim_{x \to 0} \frac{\sin x}{x^2}$

23. Evaluate the following integrals:

(a).
$$\int \sec^4 x \tan^2 x \, dx$$

(b). $\int \frac{1}{x(\ln x)^2} \, dx$
(c). $\int \frac{4x}{(x^2 - 1)(x^2 + 1)} \, dx$
(d). $\int \frac{x}{x^2 - x} \, dx$
(e). $\int_0^2 \frac{1}{x^2 - 1} \, dx$
(f). $\int_0^{2\sqrt{3}} \frac{x^3}{\sqrt{16 - x^2}} \, dx$
(g). $\int \frac{1}{x^3 - 4x^2 + 4x} \, dx$

24. Find the area under the curve $\frac{1}{x^2 + 16}$ for $0 \le x \le 3$.

25. Integrate $\int_0^\infty x e^{ax} dx$ for $a \neq 0$ and determine for which values of a it converges.

26. Section 6.5 #3

27. Use Simpson's Rule with n = 4 to approximate the value of $\int_4^6 \frac{1}{x^2} dx$. [Do **NOT** simplify.]

28. Use the <u>Trapezoid Rule</u> with n = 6 to approximate the value of $\int_0^{10} \sin(x^2) dx$. [Do <u>NOT</u> simplify.]

29. Let g denote the inverse function of f i.e. $g = f^{-1}$. Given $f(x) = 3x + \cos 2x$ on $0 \le x \le \frac{\pi}{2}$, find g'(1).

30. Find the exact value of the following:

(a).
$$\sin\left(\arctan\frac{5}{4}\right)$$
 (b). $\arctan\left(\sin\frac{3\pi}{2}\right)$ (c). $\sin^{-1}\left(\sin\frac{5\pi}{4}\right)$

31. Solve the following equations for x. [Simplify your answers.]

(a). $\ln 2 + \ln(x-3)$ (b). $e^{x^2+x} = 1$

Page 3

[[]Look at previous exams, quizzes, and review sheets for more review.]