Name: ______ Math 152, Calculus II – Crawford

	Score	
	1	/8
	2	/16
• Calculators, books, or notes (in any form) are <u>not</u> allowed.	3	/12
• You may use the formulas found on the last page.	4	/12
• Clearly indicate your answers.		
• Show all your work – partial credit may be given for written work.	5	/24
• Good Luck!	6	/10
	7	/12
	8	/10
	Total	/100

1. (8 pts). Determine whether the following <u>series</u> converges or diverges. <u>If it is convergent, find its sum</u>. [Show all your work.]

 $\sum_{n=1}^{\infty} \frac{2\cdot 3^{1-n}}{2^{n+2}}$

2. (16 pts). Determine whether the following series converge or diverge. [Show all your work and clearly indicate any tests that you use.]

(a).
$$\sum_{n=1}^{\infty} \frac{n^{2n}}{(2n^2+1)^n}$$

(b).
$$\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^{3/2}}$$

3. (12 pts). Determine whether the following series converges absolutely, converges conditionally, or diverges.[Show all your work and clearly indicate any tests that you use.]

$$\sum_{n=0}^{\infty} (-1)^n \frac{3n+2}{2n^2-5}$$

4. (12 pts). Given
$$\sum_{n=0}^{\infty} (-1)^n \frac{1}{n^2 + 36}$$

(a). If s_9 is used to approximate the infinite series, what is the bound for the error R_9 ? [Leave answer as a fraction.]

(b). How many terms are needed to approximate the infinite series with an error less than 0.01?

(c). TRUE or FALSE If s_9 is used to approximate the series $\sum_{n=0}^{\infty} \frac{1}{n^2 + 36}$, then the bound on the error $|R_9|$ will be the same as your answer in part (a).

[Don't spend time trying to compute it. You should be able to quickly determine T/F without computing the error.]

5. (24 pts). Find the <u>radius</u> of convergence and <u>interval</u> of convergence for the following series.

(a).
$$\sum_{n=0}^{\infty} \frac{(x+2)^n}{3^n(n^2+2)}$$

(b).
$$\sum_{n=0}^{\infty} \frac{2n!}{4n+1} x^n$$

[Write your final answer in concise summation notation and simplify. Do <u>not</u> find the radius or interval of convergence.]

- 7. (12 pts). [For this problem, you may write your final answers expanded <u>or</u> in concise summation notation.]
- (a). Use a known Maclaurin Series to obtain the Maclaurin Series for $f(x) = \frac{\sin(x^2)}{x}$. [You <u>must</u> simplify your answer before answering part (b).]

(b). Use the (simplified) series obtained in part (a) to evaluate the following integral

 $\int \frac{\sin(x^2)}{x} \, dx$

8. (10 pts). TRUE OR FALSE AND MATCHING. Determine whether the following statements are true or false.

(a). T F If
$$\sum_{n=1}^{\infty} c_n x^n$$
 converges for $x = -4$, but diverges for $x = 8$, then it must converge for $x = 2$.

(b). T F If
$$\sum_{n=1}^{\infty} c_n x^n$$
 converges for $x = -4$, but diverges for $x = 8$, then it must diverge for $x = -8$.

(c). T F If
$$\sum_{n=1}^{\infty} c_n x^n$$
 converges for $x = -4$, but diverges for $x = 8$, then it must diverge for $x = -10$.

(d). T F If
$$\lim a_n = 0$$
, then $\sum_{n=1}^{\infty} a_n$ converges.

(e). T F If
$$\sum_{n=1}^{\infty} a_n$$
 converges, then $\sum_{n=1}^{\infty} |a_n|$ must also converge.

$$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = \left(\frac{n+1}{n} \right)^n = e \qquad \qquad \qquad \lim_{n \to 0} \left(1 + n \right)^{1/n} = e$$

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n \qquad R = 1$$
 $e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} \qquad R = \infty$

$$\sin x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} \qquad R = \infty \qquad \qquad \cos x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!} \qquad R = \infty$$

$$\tan^{-1} x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)} \qquad R = 1 \qquad \qquad \ln(1+x) = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n} \qquad R = 1$$