Practice differentiating the following with respect to ${f t}.$

1.

(a). If x does not depend on t (i.e. x is constant), then

$$\frac{d}{dt}\left[x\right] = \mathbf{0}$$

(b). If x depends on t, then

$$\frac{d}{dt}\left[x\right] = \frac{dx}{dt}$$

2.

(a). If y does not depend on t (i.e. y is constant), then

$$\frac{d}{dt}\left[y^2\right] = 0$$

(b). If y depends on t, then

$$\frac{d}{dt} \left[y^2 \right] = 2y \frac{dy}{dt}$$

3.

(a). If x does not depend on t (i.e. x is constant) and y depends on t, then

$$\frac{d}{dt}\left[x^2 + y^2\right] = 2y\frac{dy}{dt}$$

(b). If x depends on t and y does not depend on t (i.e. y is constant), then

$$\frac{d}{dt}\left[x^2 + y^2\right] = 2x\frac{dx}{dt}$$

(c). If x depends on t and y depends on t, then

$$\frac{d}{dt}\left[x^2 + y^2\right] = 2x\frac{dx}{dt} + 2y\frac{dy}{dt}$$

4.

(a). If x does not depend on t (i.e. x is constant) and y depends on t, then

$$\frac{d}{dt}\left[xy\right] = x\frac{dy}{dt}$$

(b). If x depends on t and y does not depend on t (i.e. y is constant), then

$$\frac{d}{dt}\left[xy\right] = y\frac{dx}{dt}$$

(c). If x depends on t and y depends on t, then

$$\frac{d}{dt}\left[xy\right] = x\frac{dy}{dt} + y\frac{dx}{dt}$$

5.

(a). If x does not depend on t (i.e. x is constant), then
$$\frac{d}{dt} [\sin x] = 0$$

(b). If x depends on t, then
$$\frac{d}{dt} [\sin x] = \cos x \frac{dx}{dt}$$

6.

(a). If x does not depend on t (i.e. x is constant) and y depends on t, then
$$\frac{d}{dt} \left[\frac{x}{y} \right] = \frac{-x}{y^2} \frac{dy}{dt}$$

(b). If
$$x$$
 depends on t and y does not depend on t (i.e. y is constant), then
$$\frac{d}{dt} \left[\frac{x}{y} \right] = \frac{1}{y} \frac{dx}{dt}$$

(c). If
$$x$$
 depends on t and y depends on t , then
$$\frac{d}{dt} \left[\frac{x}{y} \right] = \frac{y \frac{dx}{dt} - x \frac{dy}{dt}}{y^2}$$

7.

(a). If
$$r$$
 does not depend on t (i.e. r is constant) and h depends on t , then
$$\frac{d}{dt} \left[\frac{1}{3} \pi r^2 h \right] = \frac{1}{3} \pi r^2 \cdot \frac{dh}{dt}$$

(b). If
$$r$$
 depends on t and h does not depend on t (i.e. h is constant), then
$$\frac{d}{dt} \left[\frac{1}{3} \pi r^2 h \right] = \frac{1}{3} \pi h \cdot 2r \frac{dr}{dt}$$

(c). If
$$r$$
 depends on t and h depends on t , then
$$\frac{d}{dt} \left[\frac{1}{3} \pi r^2 h \right] = \frac{1}{3} \pi r^2 \cdot \frac{dh}{dt} + h \left(\frac{1}{3} \pi \cdot 2r \frac{dr}{dt} \right)$$