The following expansions may be helpful:

$$(x+h)^2 = x^2 + 2xh + h^2$$

$$(x+h)^3 = x^3 + 3x^2h + 3xh^2 + h^3$$

$$(x+h)^4 = x^4 + 4x^3h + 6x^2h^2 + 4xh^3 + h^4$$

$$(x+h)^5 = x^5 + 5x^4h + 10x^3h^2 + 10x^2h^3 + 5xh^4 + h^5$$

For each of the following functions, use the limit definition $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ to compute the derivative f'(x). Show all your work.

1.
$$f(x) = x^2$$

2.
$$f(x) = x^3$$

3.
$$f(x) = x^4$$

4.
$$f(x) = x^5$$

Summarize your results here:

5. You should see a pattern. Based on the work above, make an educated guess for the derivative of the following two functions:

(a)
$$f(x) = x^{56}$$

(b)
$$f(x) = x^n$$
 where

(b) $f(x) = x^n$ where n is any positive integer.