Recall the Tangent Line Problem: Given a curve y = f(x) and a point P(a, f(a)) on the curve, find the equation for the tangent line to the curve y = f(x) at the point P.

In order to write the equation of a line, we need

- (1).
- **(2)**.

If x is the x-coordinate of point Q, then the y-coordinate is ______ . ie. So the slope of the secant line through P(a, f(a)) and Q(x, f(x)) is given by

$$m_{PQ} =$$

The approximated slope $m_{\scriptscriptstyle PQ}$ will get closer to the slope m of the tangent line as:

i.e. $m_{_{PQ}} \rightarrow m \text{ as } x \rightarrow a$

<u>Def.</u> The <u>TANGENT LINE</u> to the curve y = f(x) at the point P(a, f(a)) is the line

Ex Given $f(x) = x^2$ at x = 2

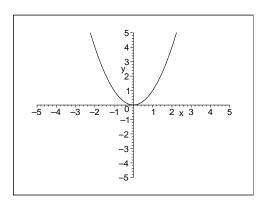
(a). Approximate the slope of the tangent line at x=2 by making a table of values for the slope of the secant line m_{PQ} near x=2.

P: At
$$x = 2, y =$$

Q: Any point on
$$y = x^2$$

So
$$m_{\scriptscriptstyle PQ} =$$

x	1.5	1.75	1.9	1.99	2	2.01	2.1	2.5	2.75
$m_{PQ} =$	3.50	3.75	3.90	3.99	??	4.01	4.1	4.25	4.5


From the table of values, guess the slope of the tangent line to be $m = \underline{\hspace{1cm}}$.

i.e.
$$\lim_{x\to 2} m_{PQ} = m =$$

(b). Verify your guess in part (a) by calculating the limit analytically.

$$m =$$

- (c). Find the equation of the tangent line to $f(x) = x^2$ at x = 2
- (d). Sketch the tangent line from part (c) on the graph of $f(x) = x^2$ below. Does this line appear to be the tangent line (just barely touching) at P?

