
What is a function?

4 Ways to Represent a Function:

1. Verbally (

Ex: Favorite Ice Cream Flavor

2. Analytically (

Ex: f(x) = 3x - 4 or y = 3x - 4

3. Numerically (

Ex: Ball Bounce

Drop	Bounce
Height (in)	Height (in)
36	25.0
40	29.0
44	31.5
48	35.0
52	37.5
56	42.0
60	46.5

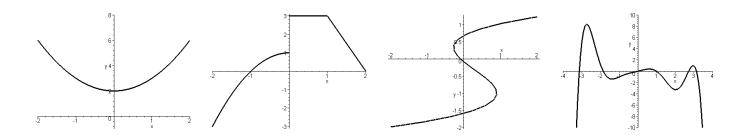
4. Visually (

Ex: EKG Reading

Independent Variable:

Dependent Variable:

Many functions represented in all 4 ways:


Ex: Words:

Equation: y = 3x - 4

Table:

Graph:

Which of the following graphs represent functions?

Why?

Forms of Functions

$$x^2 + 2y = 1$$

$$y = \frac{1}{2}(1 - x^2)$$

$$f(x) = \frac{1}{2}(1 - x^2)$$

Ex: Find f(-3)

Ex: Find f(4x)

Ex: Given $f(x) = x^2$, find and simplify $\frac{f(x+\Delta x)-f(x)}{\Delta x}$

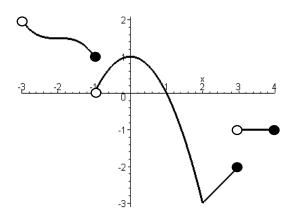
Domain and Range:

Domain:

Natural/Implicit Domain

Range:

Ex: State the domain and range for the following functions:


a)
$$f(x) = x^2$$

c)
$$f(x) = \frac{1}{x+1}$$

b)
$$f(x) = \sqrt{x}$$

d)
$$f(x) = \frac{1}{\sqrt{x+1}}$$

Piecewise Function:

Domain:

Range:

When is the function increasing?

When is the function decreasing?

Functions

Ex: Given $f(x) = \begin{cases} x, & x \ge 0 \\ -x, & x < 0 \end{cases}$

- a) Make a table of values and sketch the function
- b) What is the domain and range?
- c) Do you recognize this function? If so, what is it?

Symmetry:

Even Functions

Odd Functions

Ex: Without using a graph, determine whether the following functions are odd, even, or neither.

a)
$$f(x) = x - x^2$$

b)
$$f(x) = x^3 + x$$