Basic Limits

1. $\lim_{x \to a} c = c$

 $2. \quad \lim_{x \to a} x = a$

Limit Laws Suppose $\lim_{x \to a} f(x)$ and $\lim_{x \to a} g(x)$ exist and c is a constant, then

- 3. $\lim_{x \to a} [f(x) \pm g(x)] = \lim_{x \to a} f(x) \pm \lim_{x \to a} g(x)$
- 4. $\lim_{x \to a} cf(x) = c \lim_{x \to a} f(x)$

5.
$$\lim_{x \to a} [f(x) \cdot g(x)] = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x)$$

6.
$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}, \text{ if } \lim_{x \to a} g(x) \neq 0$$

7. $\lim_{x \to a} [f(x)]^n = [\lim_{x \to a} f(x)]^n$ for positive integer n

Even More Special Limits and Laws

- 8. $\lim_{x \to a} x^n = a^n$ for positive integer n
- **9.** $\lim_{x \to a} x^{1/n} = \lim_{x \to a} \sqrt[n]{x} = \sqrt[n]{a}$ for positive integer *n* and if *n* is even, $a \ge 0$
- 10. $\lim_{x \to a} [f(x)]^{1/n} = \lim_{x \to a} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x \to a} f(x)}$ for positive integer n. [In the case that n is even, $f(x) \ge 0$]
- Ex: Evaluate the following limit, justifying each step with limit laws.

$$\lim_{x \to 2} \frac{3x^2 + 2x + 2}{\sqrt{2x - 1}} = \frac{\lim_{x \to 2} 3x^2 + 2x + 2}{\lim_{x \to 2} \sqrt{2x - 1}}$$
by Law 6

$$= \frac{\lim_{x \to 2} 3x^2 + \lim_{x \to 2} 2x + \lim_{x \to 2} 2}{\sqrt{\lim_{x \to 2} (2x - 1)}}$$
 by Law 3 & 10

$$= \frac{3\lim_{x \to 2} x^2 + 2\lim_{x \to 2} x + \lim_{x \to 2} 2}{\sqrt{2\lim_{x \to 2} x - \lim_{x \to 2} 1}}$$
 by Law 3 & 4

$$= \frac{3(2)^2 + 2(2) + 2}{\sqrt{2(2) - 1}}$$
 by Law 8, 2, & 1

To find $\lim_{x \to a} f(x)$, we can use direct substitution (i.e., plug x = a into f(x)

when the function is "nice" at x = a.

Strategy for Finding Limits $\left[\text{i.e. Evaluating } \lim_{x \to a} f(x) \text{ analytically}\right]$

 \bigstar Always Try Direct Substitution First \bigstar

1. If you get a finite real number, you're done.

 $\lim_{x \to a} f(x) = f(a).$

2. If you get $\frac{nonzero\#}{0}$, then it is an infinite limit.

3. If you get $\frac{0}{0}$, this is called an INDETERMINATE FORM

(i.e. unable to determine $\underline{\mathrm{YET}}!!!)$ \Rightarrow More Work!!!

$$\underline{\mathbf{Ex}}_{x \to 4} \lim_{x \to 4} \frac{x^2 - 16}{x - 4} = \frac{0}{0}$$
 Note: $f(x) = \frac{x^2 - 16}{x - 4}$

(a). What is the domain of f(x)?

But is there an asymptote at x = 4?

(b). Use your calculator to graph the function and sketch it below.

Is the graph what you expected?

- (c). From your graph, determine $\lim_{x \to 4} \frac{x^2 16}{x 4}$
- (d). Observe:

$$f(x) = \frac{x^2 - 16}{x - 4} = \frac{(x - 4)(x + 4)}{(x - 4)}$$