Math 151-01 Calculus I - Crawford Books, notes (in any form), and calculators are not allowed. Show all your work. Good Luck! 1. (5 pts) Given the graph of f(x) above, state the value of each quantity below, if it exists. Clearly indicate $+\infty$ or $-\infty$ in the case of an infinite limit. If the quantity does not exist, state DNE. (a). $$f(2) = 3$$ (b). $$\lim_{x \to 0^+} f(x) = \boxed{+}$$ (c). $$\lim_{x \to -3^+} f(x)$$ (d). $$\lim_{x\to 4} f(x)$$ = 2. (5 pts) Evaluate the following limit, if it exists. Clearly indicate $+\infty$ or $-\infty$ in the case of an infinite limit. If the limit does not exist, clearly explain the reason why. $$\lim_{x \to 4} \frac{\frac{1}{x} - \frac{1}{4}}{x - 4} = \lim_{x \to 4} \frac{\frac{4 - x}{4x}}{x - 4} = \lim_{x \to 4} \frac{\frac{4 - x}}{x - 4} = \lim_{x \to 4} \frac{\frac{4 - x}{4x}}{x - 4} = \lim_{x \to 4} \frac{\frac$$ Ind. Form =) More Work 3. (5 pts) Evaluate the following limit, if it exists. Clearly indicate $+\infty$ or $-\infty$ in the case of an infinite limit. If the limit does not exist, clearly explain the reason why. $$\lim_{x \to 2} \frac{x^2 - 4}{x^2 - 2x - 8} = \lim_{x \to 2} \frac{(x + 2)(x - 2)}{(x + 2)(x - 2)} = \lim_{x \to 2} \frac{(x - 2)^2}{(x - 2)^2 - 2(-2) - 8}$$ $$= -2 - 2$$ $$(-2)^2 - 2(-2) - 8$$ $$= -2 - 2$$ $$-2 - 4$$ $$+ 4 - 4$$ $$+ 4 - 8$$ $$= 0$$ $$= 23$$ $$= 3$$