$$f(x) = x^3 + x^2 + x - 1$$

$$f'(x) = 3x^2 + 2x + 1$$

Start with x0 = 1

L ₀ :	y - 2 = 6(x - 1)		
Pt: $f(1) = 2 \Rightarrow (1,2)$			
Slope: f'(1) = 6	y = 2 + 6(x - 1)	y = f(1) + f'(1)(x - 1)	
Intersect x-axis: Set y=0 and solve for x	0 = 2 + 6(x - 1)	0 = f(1) + f'(1) (x - 1)	
	6(x-1)=-2	f'(1)(x-1) = -f(1)	
	$x - 1 = -\frac{2}{6}$	$x - 1 = -\frac{f(1)}{f'(1)}$	
	$x = 1 - \frac{2}{6}$	$x = 1 - \frac{f(1)}{f'(1)}$	
		$x = 1 - \frac{2}{6}$	
	$x = \frac{2}{3}$	$x = \frac{2}{3}$	
Let x1 be this new value	$x_1 = \frac{2}{3}$	$x_1 = \frac{2}{3}$	
Repeat Process			
L₁: Pt: f(2/3) = 11/27 => (2/3,11/27)	$y - \frac{11}{27} = \frac{11}{3} \left(x - \frac{2}{3} \right)$		
Slope: f'(2/3) = 11/3	$y = \frac{11}{27} + \frac{11}{3} \left(x - \frac{2}{3} \right)$		
Intersect x-axis: Set y=0 and solve for x	$0 = \frac{11}{27} + \frac{11}{3} \left(x - \frac{2}{3} \right)$		
	$\frac{11}{3}\left(x - \frac{2}{3}\right) = -\frac{11}{27}$		
	$x - \frac{2}{3} = -\frac{11/27}{11/3}$		
	$x = \frac{2}{3} - \frac{11/27}{11/3}$		
	$x = \frac{5}{9}$		
Let x2 be this new value	$x_2 = \frac{5}{9}$		

Newton's Method

Repeat Process		
L₂: Pt: (5/9,f(5/9)) Slope: f'(5/9)		
Intersect x-axis: Set y=0 and solve for x		
Let x3 be this new value		