Practice differentiating the following with respect to ${f t}.$

1.

(a). If
$$x$$
 does not depend on t (i.e. x is constant), then

$$\frac{d}{dt}\left[x\right] =$$

(b). If
$$x$$
 depends on t , then

$$\frac{d}{dt}\left[x\right] =$$

2.

(a). If
$$y$$
 does not depend on t (i.e. y is constant), then

$$\frac{d}{dt}\left[y^2\right] =$$

(b). If
$$y$$
 depends on t , then

$$\frac{d}{dt}\left[y^2\right] =$$

3.

(a). If
$$x$$
 does not depend on t (i.e. x is constant) and y depends on t , then

$$\frac{d}{dt}\left[x^2 + y^2\right] =$$

(b). If
$$x$$
 depends on t and y does not depend on t (i.e. y is constant), then

$$\frac{d}{dt}\left[x^2 + y^2\right] =$$

(c). If
$$x$$
 depends on t and y depends on t , then

$$\frac{d}{dt}\left[x^2 + y^2\right] =$$

4.

(a). If
$$x$$
 does not depend on t (i.e. x is constant) and y depends on t , then

$$\frac{d}{dt}\left[xy\right] =$$

(b). If
$$x$$
 depends on t and y does not depend on t (i.e. y is constant), then

$$\frac{d}{dt}\left[xy\right] =$$

(c). If
$$x$$
 depends on t and y depends on t , then

$$\frac{d}{dt}[xy] =$$

5.

(a). If x does not depend on t (i.e. x is constant), then
$$\frac{d}{dt} [\sin x] =$$

(b). If x depends on t, then
$$\frac{d}{dt} [\sin x] =$$

6.

(a). If x does not depend on t (i.e. x is constant) and y depends on t, then
$$\frac{d}{dt} \left[\frac{x}{y} \right] =$$

(b). If
$$x$$
 depends on t and y does not depend on t (i.e. y is constant), then
$$\frac{d}{dt} \left[\frac{x}{y} \right] =$$

(c). If x depends on t and y depends on t, then
$$\frac{d}{dt} \left[\frac{x}{y} \right] =$$

7.

(a). If r does not depend on t (i.e. r is constant) and h depends on t, then
$$\frac{d}{dt} \left[\frac{1}{3} \pi r^2 h \right] =$$

(b). If
$$r$$
 depends on t and h does not depend on t (i.e. h is constant), then $\frac{d}{dt} \left[\frac{1}{3} \pi r^2 h \right] =$

(c). If r depends on t and h depends on t, then
$$\frac{d}{dt} \left[\frac{1}{3} \pi r^2 h \right] =$$