1. (a). Find $\frac{d}{dx} [x^2y]$ if you assume y is constant. (b). Find $\frac{d}{dx} [x^2y]$ if you assume y is a function of x.

Recall, an **explicit function** is one of the form y = f(x), where the \overline{y} is all by itself on one side and everything else is on the other side.

2. Use your calculator to sketch the following examples of explicitly defined functions:

(a).
$$y = 3x^2 - 5$$
 (b). $y = \sin 4x$ (c). $y = \frac{x+1}{x-1}$

An **implicit function** or curve is defined by an equation relating x and y.

However, the y may show up in a more complicated way (i.e. you may not be able to isolate y by itself on one side of the equation)

3. $x^2 + y^2 = 25$ is an implicitly defined relationship.

(a). Sketch a graph $x^2 + y^2 = 25$.

(b). If x = 4, do you know what y must be on this curve? If so, find these values of y.

So does y depend on x or is y independent of x?

(c). Go back to your sketch and draw the tangent line(s) to this curve at the point(s) where x = 4.

4. xy = 1 is an implicitly define function.

(a). Does y depend on x or is y independent of x?

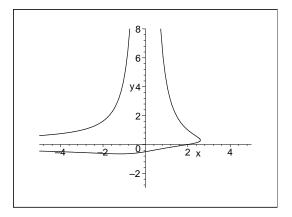
Given the following values for x, find what y must be on this curve and complete the table. Use the table to sketch a picture of xy = 1.

x	у
-4	
-3	
-2	
-1	
-1/2	
-1/3	
-1/4	
1/4	
1/3	
1/2	
1	
2	$\frac{1}{2}$
3	2
4	

(b). Sketch the tangent to this curve at the point $(2, \frac{1}{2})$.

5. $x^3y^2 - 4xy + x^2 = 2x$ is an implicitly defined curve, whose graph is given below.

- (a). Do you think that y depends on x?
- (b). Sketch the tangent line to this curve at the point (2,0).



6. Based on problems 3-5, *briefly* explain why it makes sense to talk about the derivative of y with respect to x (i.e. $\frac{dy}{dx}$) for implicitly defined curves.