1. Given $f(\theta) = \cos^2(\theta)$, on $0 \le \theta \le 2\pi$, find the intervals of concavity and the inflection points.

2. Evaluate the following limits. [Show all work - no shortcuts].

(a).
$$\lim_{x \to \infty} \frac{3 - x^2 + 4x^3}{x^4 + 2x}$$
 (b). $\lim_{x \to -\infty} \frac{2x^2 + 3x + 1}{3x^2 - 3x - 4}$

3. Find $\lim_{x \to +\infty} f(x)$ for the following functions and determine any horizontal and slant asymptotes.

(a).
$$f(x) = \frac{2x+1}{\sqrt{4x^2 - x}}$$
 (b). $g(x) = \frac{2x^3 - 3x^2 + 2}{x^2 - 3x}$

4. Given the following function and its derivatives

$$f(x) = \frac{x}{9 - x^2} \qquad f'(x) = \frac{x^2 + 9}{(9 - x^2)^2} \qquad f''(x) = \frac{2x(x^2 + 27)}{(9 - x^2)^3}$$

Use the Summary of Curve Sketching to determine the relevant information. Sketch the graph of the function. Label any maximum and minimum points and inflection points.

domain:	slant asymptote:	coordinates of local $\max/\min(s)$:
x-intercept(s):	critical numbers:	intervals where concave up:
y-intercept:	intervals where increasing:	intervals where concave down:
vertical asymptote(s):		
horizontal asymptote(s):	intervals where decreasing:	inflection point(s):

5. If a box with a square base and open top is to hold 4 ft^3 , find the dimensions of the box that will require the least amount of material.

6. Find the maximum possible volume of a right circular cylinder if its total surface area (including top and bottom) is 150π .

7. A Norman window is constructed by adjoining a semicircle to the top of an ordinary rectangular window. Find the dimensions of the Norman window with the largest possible area if the total perimeter is 16 ft.

8. Given $f(x) = 4x^3 - 12x^2 + 12x - 3$

(a). Explicitly write out Newton's formula for finding the root of this function.

- (b). Starting with $x_0 = 0.5$, demonstrate Newton's method by marking x_0, x_1, x_2, \ldots and the associated tangent lines on the graph of f(x). Does it seem like Newton's method will work if you start with this initial guess?
- (c). Starting with $x_0 = 1.0$, demonstrate Newton's method by marking x_0, x_1, x_2, \ldots and the associated tangent lines on the graph of f(x). Does it seem like Newton's method will work if you start with this initial guess? Why or why not?
- 9. Find the antiderivatives for the following functions.

(a).
$$h(x) = 3x^3 - 7x^2$$
 (b). $f(x) = \sqrt{x} - \sqrt{3x^2}$

10. Given that $g'(\theta) = -\sec^2 \theta$ and $g\left(\frac{\pi}{3}\right) = 0$, find $g(\theta)$.

11. Given the function $f(x) = \frac{3}{x}$, estimate the area under the curve f(x) on the interval [1,6] using 5 subintervals and using the right endpoint of each subinterval. [i.e. find R_5]. You must actually find the value.

12. Using the definition of the definite integral $\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i) \Delta x = \lim_{n \to \infty} R_n$, <u>set-up</u>, but do not evaluate, the summation/limit using right endpoints for the integral $\int_{0}^{1} x^3 + 1 dx$.

13. Evaluate the limit $\lim_{n \to \infty} \sum_{i=1}^{n} \frac{1}{n} \left(\frac{i}{n}\right)^2$

14. Section 4.3: #3

15. Evaluate the following integrals [Use integration techniques, <u>not</u> the limit definition.]:

(a).
$$\int_{1}^{2} t + 2 dt$$
 (d). $\int_{1}^{x^{2}} t + 2 dt$ $\int_{0}^{4} \frac{x(2+x)}{\sqrt{x}} dx$

16. Use the Fundamental Theorem of Calculus (Part B/1) to find F'(x)

(a).
$$F(x) = \int_0^x t \cos t \, dt$$

(b). $F(x) = \int_{-2}^{x^2} \sqrt{t+8} \, dt$

17. Evaluate the following integrals.

(a).
$$\int 3x^5 - 4x^3 + 6x + 2 \, dx$$

(b). $\int x(3x^2 - 2x)^2 \, dx$
(c). $\int \left(1 + \frac{1}{t}\right) \left(\frac{1}{t^2}\right) \, dt$
(d). $\int_0^{\pi/6} \sec x \tan x \, dx$
(e). $\int_1^3 \frac{x^2 + 1}{x^2} \, dx$
(f). $\int y^2 \sqrt{y} \, dy$

18. A particle moves with a velocity of $v(t) = -t^2 + 4t$ on the interval $0 \le t \le 6$.

(a). Find the displacement (b). Find the total distance traveled

19. Let r(t) be the rate at which the world's oil is consumed, where t is measured in years starting at t = 0 on January 1, 2000 and r(t) is measured in barrels per year. What does $\int_0^8 r(t) dt$ represent and what are its units?