8th Edition: Section 7.78-79, p. 267: \#1, 2, 5, 6, 8[See hint below]
9th Edition: Section 7.85-86, p. 264: \#1, 2, 6, 7, 9[See hint below]

Hints for \#8[9]:

- Leave values in polar form for most of the problem. Near the end convert to rectangular.
- Use the $f(z)=\frac{p(z)}{q(z)}$ form for finding the residue at the simple pole.
- Use residues to evaluate $\oint_{C} \frac{1}{z^{3}+1} d z$
- $\oint_{C} \frac{1}{z^{3}+1} d z=\int_{L_{R}} \frac{1}{z^{3}+1} d z+\int_{C_{R}} \frac{1}{z^{3}+1} d z+\int_{L_{1}} \frac{1}{z^{3}+1} d z$

Then as $R \rightarrow \infty$

- Show that $\int_{C_{R}} \frac{1}{z^{3}+1} d z \rightarrow 0$
- Parameterize the curve along $L_{R}: z=x$
- Parameterize the curve along $L_{1}: z=$ \qquad
- Are $\int_{0}^{\infty} \frac{1}{x^{3}+1} d x$ and $\int_{0}^{\infty} \frac{1}{r^{3}+1} d r$ the same or different integrals?

FYI: Currently you have 4 homework scores, of which I am dropping 1. I will collect the following assignment on Wednesday for a total of 5 assignments and I will drop 2.

8th Edition: Section 6.71, p. 239: \#1(a-c), $2 \underline{\boldsymbol{A} N D}$ Section 6.74, p. 248: \#1, 2, 3, 4, 5 9th Edition: Section 6.77, p. 237: \#1(a-c), $2 \underline{\boldsymbol{A} N \boldsymbol{D}}$ Section 6.81, p. 246: \#1(b,c,d), 2, 4, 5, 6

