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Some properties and formulas we’ll need to prove Taylor’s Theorem:

• Formula for
1

s− z
(derived on previous worksheet):

i.e.
1

s− z
=

[
N−1∑
n=0

zn

sn+1

]
+

zN

sN (s− z)
(∗)

• (Theorem Section 4.43) If f is piecewise continuous on a contour C and |f(z)| ≤ M for all z on C then∣∣∣∣∫
C
f(z) dz

∣∣∣∣ ≤ ML

where L is the length of the contour C.

• Theorem (given without proof): If f is analytic and nonconstant on a closed region R that is bounded by
the simple closed contour C, then |f(z)| is guaranteed to have a maximum which will always occur somewhere
on the curve C.

Taylor’s Theorem
Suppose f is analytic in the open disk |z − z0| < R. Then in that disk, f(z) has the power series representation

f(z) =
∞∑
n=0

f (n)(z0)

n!
(z − z0)

n = f(z0) + f ′(z0)(z − z0) +
f ′′(z0)

2!
(z − z0)

2 +
f ′′′(z0)

3!
(z − z0)

3 + . . .

i.e. The series converges to f(z) in this disk |z − z0| < R. [Note: R is called the Radius of Convergence .]
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Proof (for z0 = 0)

Let f(z) be analytic in the open disk |z − z0| < R.

Let z be an arbitrary point inside this disk such that |z| = r

Define C0 to be the positively oriented circle |z| = r0 where r < r0 < R.

[Sketch a picture.]

Since f is analytic inside and on C0, the Cauchy-Integral formula gives:
[Hint: The singularity in the integrand is at z not z0 and use s as the variable of integration.]

f(z) =
1

2πi

∫
C0

f(s)

s− z
ds

=
1

2πi

∫
C0

f(s)
1

s− z
ds

=
1

2πi

∫
C0

f(s)

[ [
N−1∑
n=0

zn

sn+1

]
+

zN

sN (s− z)

]
ds by (∗)

=
1

2πi

∫
C0

[[
f(s)

N−1∑
n=0

zn

sn+1

]
+ f(s)

zN

sN (s− z)

]
ds

=
1

2πi

∫
C0

[
N−1∑
n=0

f(s)
zn

sn+1

]
ds+

1

2πi

∫
C0

f(s)
zN

sN (s− z)
ds

=

N−1∑
n=0

[
1

2πi

∫
C0

f(s)
zn

sn+1
ds

]
+

1

2πi

∫
C0

f(s)
zN

sN (s− z)
ds

=

N−1∑
n=0

[
zn

1

2πi

∫
C0

f(s)

sn+1
ds

]
+

1

2πi

∫
C0

f(s)

(s− z)
· z

N

sN
ds

=

N−1∑
n=0

[
zn

fn(0)

n!

]
+

1

2πi

∫
C0

f(s)

(s− z)
· z

N

sN
ds by the Cauchy-Integral formula

=
N−1∑
n=0

[
fn(0)

n!
zn

]
+RN (z)

In the limit as N → ∞, the first term becomes the Taylor Series (about z0 = 0).

So all we need to show is that RN =
1

2πi

∫
C0

f(s)

(s− z)
· z

N

sN
ds → 0 as N → ∞
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Recall the picture for (i). f(z) analytic in the open disk |z − z0| < R (ii). z an arbitrary point inside this disk such that |z| = r

(iii). C0 the positively oriented circle |z| = r0 where r < r0 < R

• |z|n = rn

• Since s is the variable of integration and we are integrating along C0, s can be parameterized as
s = r0e

iθ and therefore |s| = r0 .

• By the theorem given on the first worksheet, since f is analytic and nonconstant on the region bounded by
C0, then |f(s)| will have a maximum M on C0, i.e. |f(s)| ≤ M .

• By the triangle inequality, |s− z| ≥ ||s| − |z|| = | r0 − r | = r0 − r. Therefore,
1

|s− z|
≤ 1

r0 − r

Combining all of the above, we have

∣∣∣∣ 1

2πi

f(s)

(s− z)
· z

N

sN

∣∣∣∣ ≤ 1

2π
· M

r0 − r
· r

N

rN0

Since the length L of C0 is 2πr0 , by the ML−inequality, we have

|RN | =
∣∣∣∣ 1

2πi

∫
C0

f(s)

(s− z)
· z

N

sN
ds

∣∣∣∣ ≤ 1

2π

M

r0 − r
· r

N

rN0
· 2πr0 =

Mr0
r0 − r

(
r

r0

)N

i.e. 0 ≤ |RN | ≤ Mr0
r0 − r

(
r

r0

)N

⇒ 0 ≤ lim
N→∞

|RN | ≤ lim
N→∞

Mr0
r0 − r

(
r

r0

)N

Since
r

r0
< 1 =⇒ lim

N→∞

(
r

r0

)N

= 0 .

⇒ 0 ≤ lim
N→∞

|RN | ≤ 0

Therefore, by the squeeze theorem , lim
N→∞

|RN | = 0

Therefore, by taking the limit as N → ∞ f(z) = lim
N→∞

N−1∑
n=0

[
fn(0)

n!
zn

]
+ lim

N→∞
RN (z),

⇒ f(z) =

∞∑
n=0

fn(0)

n!
zn

i.e. The Taylor Series does, in fact, converge to f(z) as N → ∞.


