Cauchy-Goursat Theorem [Given previously.]
If a function f is analytic at all points interior to and on a simple closed contour C, then $\oint_{C} f(z) d z=0$.

If a function f is analytic throughout a simply connected domain D, then $\oint_{C} f(z) d z=0$ for every closed contour C lying in D.

What is the difference?

Informal Proof:

Ex: Evaluate the following integral where C is the contour given in the following sketch.
$\int_{C} \tan z d z$

Let D be the given domain with one hole (doubly-connected).

Let C be the outer boundary of D (in the ccw direction).

Let C_{1} be the inner boundary of D (in the cw direction).

Then the entire boundary ∂D is comprised of \qquad and note that as you traverse C and C_{1} in the given orientations, that the domain D is always to the \qquad of the contour.

Introduce a line L_{1} that connects C to C_{1}.
Allow the the path along L_{1} and L_{2} to travel in both directions.

If you now traverse the contour $\Gamma=C+L_{1}+\left(C_{1}\right)-L_{1}$, what type of domain does it enclose?

Evaluate $\int_{\Gamma} f(z) d z$

This idea can be extended for multiply connected domains (more than one hole)

Theorem Cauchy-Goursat Extension 2
[Used for
Suppose that
(a). C is a simple closed contour oriented in the counterclockwise direction.
(b). $C_{k}(k=1,2, \ldots, n)$ are simple closed contours interior to C, oriented in the clockwise direction, that are disjoint with no common interior points.

If a function f is analytic on all of these contours and throughout the multiply-connected domain D consisting of the points inside C and exterior to each C_{k}, then

Ex: Given the following picture,
(a). Use the last theorem to evaluate: $\quad \int_{C_{2}} f(z) d z+\int_{-C_{1}} f(z) d z=$
(b). Rewrite the last result to involve contour integrals of C_{1} and $C_{2}\left[\right.$ instead of $\left.-C_{1}\right]$.

Based on the last problem, fill in the blanks (except for the name) to the following corollary.

COROLLARY [
Let C_{1} and C_{2} denote simple closed curves oriented in the \qquad direction, where C_{1} is interior to C_{2}. If a function f is \qquad in the closed region consisting of those contours and all the points between them, then

In other words,

From Part I, problem 2, we saw that $\int_{C} \frac{1}{z} d z=$ \qquad for both the unit circle and the square.

This last corollary proves that $\int_{C} \frac{1}{z} d z=$ \qquad for any positively oriented curve about the origin.

Ex: From 8th Edition Section 4.2 Example 2 \& Exercise 10b or 9th Edition Section 4.46 Exercise 13, we have the following result:
$\oint_{C} \frac{1}{\left(z-z_{0}\right)^{n}} d z=\left\{\begin{array}{ll}0, & n= \pm 1, \pm 2, \ldots \\ 2 \pi i, & n=1\end{array} \quad\right.$ Where C is the circle of radius R centered at z_{0}. i.e. $C: z=z_{0}+R e^{i \theta}$.

Use deformation of path to fill in the blank of the more general result:
$\oint_{C} \frac{1}{\left(z-z_{0}\right)^{n}} d z= \begin{cases}0, & n= \pm 1, \pm 2, \ldots \\ 2 \pi i, & n=1\end{cases}$
Where C is \qquad positively oriented simply closed contour surrounding \qquad .

1. Use the above result to evaluate the following integral where C is the triangle with vertices at $i, 2-i$, and $-2-i$.
$\oint_{C} \frac{3}{2 z-1} d z$
2. Verify that your answer is correct by evaluating the same integral using parameterization. Rather than parameterize the triangle, deformation of path allows you to choose a "nicer" contour C_{1}. What would be a good choice?
$\oint_{C} \frac{3}{2 z-1} d z=\oint_{C_{1}} \frac{3}{2 z-1} d z$

Does your answer match up with $\# 1$? If not, go back and see if you can find your mistake (it might be in $\# 1$, rather than in $\# 2$).
3. Given the following integral, first use partial fraction decomposition to rewrite the integrand. Then use any known theorems to evaluate the integrals without using parameterization. Let C_{1} be the same wisely chosen contour from problem 2 .
$\oint_{C_{1}} \frac{4 z-9}{(2 z-1)(z-4)} d z$

