1. Given $f(z)=\frac{1}{z^{2}}$
(a). What is the natural domain of f ?
(b). Is this domain simply connected? Why or why not?
(c). Is f analytic on its natural domain?
(d). If C is the unit circle $e^{i \theta}, 0 \leq \theta \leq 2 \pi$, is f analytic on the region bounded by C ?

Can you use the Cauchy-Goursat Theorem to evaluate $\int_{C} \frac{1}{z^{2}} d z ?$
(e). Evaluate $\int_{C} \frac{1}{z^{2}} d z$
(f). If C is the square centered at the origin and beginning and ending at the point $(1,0)$, is f analytic on the region bounded by C ?
[Note: Same initial and terminal points as unit circle.]
Can you use the Cauchy-Goursat Theorem to evaluate $\int_{C} \frac{1}{z^{2}} d z$?
(g). Evaluate $\int_{C} \frac{1}{z^{2}} d z$

$$
\int_{C_{2}} \frac{1}{z^{2}} d z=
$$

$$
\int_{C_{3}} \frac{1}{z^{2}} d z=
$$

$$
\int_{C_{4}} \frac{1}{z^{2}} d z=
$$

$$
\int_{C_{5}+C_{1}} \frac{1}{z^{2}} d z=
$$

$\int_{C} \frac{1}{z^{2}} d z=\quad$ where C is the given square.

2. Given $f(z)=\frac{1}{z}$
(a). What is the natural domain of f ?
(b). Is this domain simply connected? Why or why not?
(c). Is f analytic on its natural domain?
(d). If C is the unit circle $e^{i \theta}, 0 \leq \theta \leq 2 \pi$, is f analytic on the region bounded by C ?

Can you use the Cauchy-Goursat Theorem to evaluate $\int_{C} \frac{1}{z} d z$?
(e). Evaluate $\int_{C} \frac{1}{z} d z$
(f). If C is the square centered at the origin and beginning and ending at the point $(1,0)$, is f analytic on the region bounded by C ?
[Note: Same initial and terminal points as unit circle.]
Can you use the Cauchy-Goursat Theorem to evaluate $\int_{C} \frac{1}{z} d z ?$
(g). Evaluate $\int_{C} \frac{1}{z^{2}} d z$
[By parameterization - see picture.]
[If short on time, make an educated guess for what you think the final answer will be without actually doing the work.]

$$
\int_{C_{2}} \frac{1}{z} d z=
$$

$$
\int_{C_{3}} \frac{1}{z} d z=
$$

$$
\int_{C_{4}} \frac{1}{z} d z=
$$

$$
\int_{C_{5}+C_{1}} \frac{1}{z} d z=
$$

$$
\int_{C} \frac{1}{z} d z=\quad \text { where } C \text { is the given square. }
$$

In fact, $\quad \int_{C} \frac{1}{z^{2}} d z=0 \quad$ and $\quad \int_{C} \frac{1}{z} d z=2 \pi i \quad$ for $\underline{\text { all }}$ simple closed curves C around the origin.

We will explore the following two questions arising from these examples:
(a). Why did $\int_{C} \frac{1}{z^{2}} d z=0$, whereas $\int_{C} \frac{1}{z} d z \neq 0$ for all closed contours?
(b). Why did $\int_{C} \frac{1}{z^{2}} d z=0$ for both the circle and the square? Why did $\int_{C} \frac{1}{z} d z=2 \pi i$ for both the circle and the square?

