Page 1

1. Evaluate the following integrals for $f(z) = z^2$.

(a). $\int_{\Gamma_1} z^2 dz$ where Γ_1 is the contour that consists of the line segments from z = 0 to z = 3 and from z = 3 to z = 3 + 2i.

(b).
$$\int_{\Gamma_2} z^2 dz$$

where Γ_2 is the contour that consists of the line segment from z = 0 to z = 3 + 2i.

2. Evaluate the following integrals for $f(z) = \overline{z}$ with the same contours as problem 1.

(a). $\int_{\Gamma_1} \overline{z} \, dz$ where Γ_1 is the contour that consists of the line segments from z = 0 to z = 3 and from z = 3 to z = 3 + 2i.

(b). $\int_{\Gamma_2} \overline{z} dz$

where Γ_2 is the contour that consists of the line segment from z = 0 to z = 3 + 2i.

Did the same interesting result occur?

What is a fundamental difference between the functions $f(z) = z^2$ and $f(z) = \overline{z}$?