1. Evaluate the following integrals for $f(z)=z^{2}$.
(a). $\int_{\Gamma_{1}} z^{2} d z \quad$ where Γ_{1} is the contour that consists of the line segments from $z=0$ to $z=3$ and from $z=3$ to $z=3+2 i$.
(b). $\int_{\Gamma_{2}} z^{2} d z$ where Γ_{2} is the contour that consists of the line segment from $z=0$ to $z=3+2 i$.

You should notice something interesting about your results. What is it?
2. Evaluate the following integrals for $f(z)=\bar{z}$ with the same contours as problem 1 .
(a). $\int_{\Gamma_{1}} \bar{z} d z \quad$ where Γ_{1} is the contour that consists of the line segments from $z=0$ to $z=3$ and from $z=3$ to $z=3+2 i$.
(b). $\int_{\Gamma_{2}} \bar{z} d z$ where Γ_{2} is the contour that consists of the line segment from $z=0$ to $z=3+2 i$.

Did the same interesting result occur?

What is a fundamental difference between the functions $f(z)=z^{2}$ and $f(z)=\bar{z}$?

