

Derivation: Find the area under the curve $f(x) \geq 0$ on the interval $[a, b]$

Divide $[a, b]$ into n subintervals of length $\Delta x=$

Approximate the area with rectangles for each subinterval: $A_{k}=$

Add up all the rectangles to approximate the total area: $A \approx \sum_{k=1}^{n} f\left(x_{k}^{*}\right) \Delta x$.

Take the limit and define the definite integral: $\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} f\left(x_{k}^{*}\right) \Delta x$

Find the Arc Length of a curve defined parametrically by $C: x=x(t), y=y(t)$ on the interval $\alpha \leq t \leq \beta$. [Calc II/III]

Divide the parameter interval $[\alpha, \beta]$ into n subintervals.

So a point on the curve C is given by $P_{k}=$

Approximate the length by straight line segments in each subinterval:

$$
\begin{aligned}
L_{k} & =\sqrt{\left(x_{k}-x_{k-1}\right)^{2}+\left(y_{k}-y_{k-1}\right)^{2}} \\
& =\sqrt{\left(x\left(t_{k}\right)-x\left(t_{k-1}\right)\right)^{2}+\left(y\left(t_{k}\right)-y\left(t_{k-1}\right)\right)^{2}}
\end{aligned}
$$

Using the MVT for derivatives: $x^{\prime}\left(c_{k}\right)=$
$=\sqrt{\left[x^{\prime}\left(c_{k}\right)\right]^{2}+\left[y^{\prime}\left(c_{k}\right)\right]^{2}} \Delta t_{k}$

Add up all the line segments to approximate the total arc length: $L \approx \sum_{k=1}^{n} \sqrt{\left[x^{\prime}\left(c_{k}\right)\right]^{2}+\left[y^{\prime}\left(c_{k}\right)\right]^{2}} \Delta t_{k}$
Take the limit and define the integral: $L=$ $=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \sqrt{\left[x^{\prime}\left(t_{k}^{*}\right)\right]^{2}+\left[y^{\prime}\left(t_{k}^{*}\right)\right]^{2}} \Delta t_{k}$

Which can also be written alternately as

$$
L=\int_{\alpha}^{\beta} d s \quad \text { where } d s=
$$

$\underline{\text { Line Integrals in the Plane: Integrate } f \text { along a parametrically given curve } C: x=x(t), y=y(t) \text { for } \alpha \leq t \leq \beta}$ [Calc III]
with respect to x
$\int_{C} f(x, y) d x$
with respect to y
$\int_{C} f(x, y) d y$
with respect to arc length s

$$
\int_{C} f(x, y) d s
$$

Then the limit definitions of the line integrals are:
Line Integral along C with respect to x :

$$
\int_{C} f(x, y) d x=\lim _{\|P\| \rightarrow 0} \sum_{k=1}^{n} f\left(x_{k}^{*}, y_{k}^{*}\right) \Delta x_{k}
$$

Line Integral along C with respect to y :

$$
\int_{C} f(x, y) d y=\lim _{\|P\| \rightarrow 0} \sum_{k=1}^{n} f\left(x_{k}^{*}, y_{k}^{*}\right) \Delta y_{k}
$$

Line Integral along C with respect to arc length s :

$$
\int_{C} f(x, y) d s=\lim _{\|P\| \rightarrow 0} \sum_{k=1}^{n} f\left(x_{k}^{*}, y_{k}^{*}\right) \Delta s_{k}
$$

But we don't need the limit definitions to evaluate the integrals. Instead, convert the line integral to a definite integral with respect to the parameter t on the interval $[\alpha, \beta]$:
[C traversed once.]

$$
x=x(t) \quad y=y(t) \quad s \text { is arc length }
$$

differentials:

Make the substitutions:
$\int_{C} f(x, y) d x=$
$\int_{C} f(x, y) d y=$
$\int_{C} f(x, y) d s=$

