1. Fill in the blanks to derive an expression for the inverse sine function (i.e. $\sin ^{-1} z$).

Let $w=\sin ^{-1} z$, then $z=\sin w$.
[We want to solve for w since it equals $\sin ^{-1} z$.]
Then $z=\frac{\frac{e^{i w}-e^{-i w}}{2 i}}{}$ by the definition of $\sin w$.
Multiply both sides by $2 i e^{i w}$:

$$
\begin{aligned}
2 i z e^{i w} & =\frac{e^{i w}-e^{-i w}}{2 i} \cdot 2 i e^{i w} \\
& =\frac{e^{2 i w}-1}{}
\end{aligned}
$$

$\Rightarrow e^{2 i w}-2 i z e^{i w}-1=0 \quad$ But $e^{2 i w}=\left(\underline{e^{i w}}\right)^{2}$
So $\left(e^{i w}\right)^{2}-2 i z\left(e^{i w}\right)-1=0$ is a quadratic equation in $\quad e^{i w}$.
[Given a complex quadratic equation $a z^{2}+b z+c=0$, the quadratic formula (for complex variables) is $\quad z=\frac{-b+\left(b^{2}-4 a c\right)^{1 / 2}}{2 a}$
See Exercise 8(a), Sec. 10. Be sure to use proper notation.]
Applying this formula to the above equation yields:
$e^{i w}=\frac{2 i z+\left[(-2 i z)^{2}-4(1)(-1)\right]^{1 / 2}}{2(1)}=\frac{2 i z+\left[-4 z^{2}+4\right]^{1 / 2}}{2}=\frac{2 i z+\left[4\left(1-z^{2}\right)\right]^{1 / 2}}{2}=\frac{2 i z+2\left(1-z^{2}\right)^{1 / 2}}{2}$
So $e^{i w}=i z+\quad\left(1-z^{2}\right)^{1 / 2}$
[Note: The RHS is double-valued since there are exactly 2 roots.]
Solve for w by taking the logarithm of both sides:
$\log \left(e^{i w}\right)=\log \left[i z+\left(1-z^{2}\right)^{1 / 2}\right]$
$\underline{i w}=\log \left[i z+\left(1-z^{2}\right)^{1 / 2}\right]$
$w=\quad-i \log \left[i z+\left(1-z^{2}\right)^{1 / 2}\right]$

Therefore, since $w=$ \qquad from the very beginning, we have

$$
\sin ^{-1} z=-i \log \left[i z+\left(1-z^{2}\right)^{1 / 2}\right]
$$

Similarly,

$$
\cos ^{-1} z=-i \log \left[z+i\left(1-z^{2}\right)^{1 / 2}\right]
$$

$$
\tan ^{-1} z=\frac{i}{2} \log \frac{i+z}{i-z}
$$

2. Consider the expression for $\sin ^{-1} z$ above. Is it single-valued, double-valued, or multiple(more than 2)-valued? [You may need to check your answer after doing problem \#3.]

It is multiple-valued because of the logarithm.
3. Fill in the blanks to find $\sin ^{-1} \sqrt{5}$.

$$
\begin{aligned}
\sin ^{-1} \sqrt{5} & =-i \log \left[i \frac{\sqrt{5}}{}+(1-\underline{5})^{1 / 2}\right] \\
& =-i \log \left[i \sqrt{5}+(-4)^{1 / 2}\right] \quad \text { Luckily, we know }(-4)^{1 / 2}=\underbrace{ \pm 2 i} \text { w/o needing polar representation. } \\
& =-i \log [i \sqrt{5} \pm \ldots 2 i \\
& =-i \log [(\sqrt{5} \pm 2) i] \\
& =-i[\ln |\ldots(\sqrt{5} \pm 2) i \quad|+i \arg (\ldots(\sqrt{5} \pm 2) i \quad)] \\
& =-i[\ln |(\sqrt{5} \pm 2)|+i \arg ((\sqrt{5} \pm 2) i)] \quad \text { since }|i|=1
\end{aligned}
$$

But $(\sqrt{5} \pm 2) i$ are both purely \quad imaginary \quad AND $\sqrt{5} \pm 2$ are both positive.
So they both have the same argument:

$$
\begin{aligned}
& =-i\left[\ln (\sqrt{5} \pm 2)+i\left(\frac{\frac{\pi}{2}+2 n \pi}{2}\right)\right], \quad n=0, \pm 1, \pm 2, \ldots \\
& =\left(\frac{\pi}{2}+2 n \pi\right)-i \ln (\sqrt{5} \pm 2), \quad n=0, \pm 1, \pm 2, \ldots
\end{aligned}
$$

We could stop here, but to see how the book writes some answers, complete the following extra steps.

$$
\begin{equation*}
\sqrt{5}-2=(\sqrt{5}-2) \cdot \frac{\sqrt{5}+2}{\sqrt{5}+2}=\frac{5-4}{\sqrt{5}+2}=\frac{1}{\sqrt{5}+2} \tag{Simplify.}
\end{equation*}
$$

So

$$
\ln (\sqrt{5}-2)=\ln \left(\frac{1}{\sqrt{5}+2}\right)=\ln (\sqrt{5}+2)^{-1}=-\ln (\sqrt{5}+2)
$$

In other words, $\ln (\sqrt{5} \pm 2)= \pm$ \qquad $\ln (\sqrt{5}+2)$.

So the answer above can be written as $\sin ^{-1}(\sqrt{5})=\left(\frac{\pi}{2}+2 n \pi\right) \pm i \ln (\sqrt{5}+2), \quad n=0, \pm 1, \pm 2, \ldots$

Sketch the values in the complex plane.
[Go back to question number 2 - did you answer it correctly?]
4. Look in your book and write down the definitions for the inverse hyperbolic functions in terms of logarithms. 8th edition, Section 3.36 or 9th edition, Section 3.40
$\sinh ^{-1} z=\log \left[z+\left(z^{2}+1\right)^{1 / 2}\right]$

$$
\cosh ^{-1} z=\log \left[z+\left(z^{2}-1\right)^{1 / 2}\right]
$$

$$
\tanh ^{-1} z=\frac{1}{2} \log \frac{1+z}{1-z}
$$

5. Find all the values of $\cosh ^{-1}(3 i)$.

Sketch the values in the complex plane.
6. If we make a branch cut so that the inverse trigonometric functions are single-valued and analytic, then the derivatives are defined as:
[Look up any missing formulas.]
$\frac{d}{d z}\left[\sin ^{-1} z\right]=\frac{1}{\left(1-z^{2}\right)^{1 / 2}} \quad \frac{d}{d z}\left[\cos ^{-1} z\right]=-\frac{1}{\left(1-z^{2}\right)^{1 / 2}} \quad \frac{d}{d z}\left[\tan ^{-1} z\right]=\frac{1}{1+z^{2}}$

Fill in the blanks to derive the derivative of $\sin ^{-1} z$

Let $w=\sin ^{-1} z$. [So $\frac{d w}{d z}=\frac{d}{d z}\left[\sin ^{-1} z\right]$ and therefore we need to find $\left.\frac{d w}{d z}\right]$

Then \qquad $=z$

Implicitly differentiate both sides
[Remember w is a function of z.]
$\frac{d}{d z}[\sin w]=\frac{d}{d z}[z]$

$$
\cos w \frac{d w}{d z} \quad=1
$$

Then $\frac{d w}{d z}=\frac{1}{\cos w}$
[But we need $\frac{d w}{d z}$ as a function of z.]

From the identity $\cos ^{2} w+\sin ^{2} w=1$, we get $\cos w=$ \qquad .

But from above, $\sin w=z$, so $\cos w=\left(1-\sin ^{2} w\right)^{1 / 2}=\left(1-z^{2}\right)^{1 / 2}$

Substitute this expression into $\left(^{*}\right)$ to get $\frac{d w}{d z}=\frac{1}{\left(1-z^{2}\right)^{1 / 2}}$.
i.e. $\frac{d}{d z}\left[\sin ^{-1} z\right]=\frac{1}{\left(1-z^{2}\right)^{1 / 2}}$

Homework 8th Edition Section 3.36[9th Edition, Section 3.40], p. 114: \#1(sketch values in the complex plane), 2, 3, 5
Additional Problem: I. Given $\cos ^{-1}\left(\frac{5}{3}\right)$,
(a). Find all values.
(b). Find the value using the principal branch of $\log z$ and the principal branch of $z^{1 / 2}$ or state why it is undefined.
(c). Find the value using the principal branch of $\log z$ and the branch $z^{1 / 2}=\sqrt{r} e^{i \theta / 2}(r>0,0<\theta<2 \pi)$ for $z^{1 / 2}$ or state why it is undefined.
(d). Find the derivative of $\cos ^{-1}(z)$ at $z=\frac{5}{3}$ using the branches from part (a) or state why it is undefined.
(e). Find the derivative of $\cos ^{-1}(z)$ at $z=\frac{5}{3}$ using the branches from part (b) or state why it is undefined.

