1. Fill in the blanks to derive an expression for the inverse sine function (i.e. $\sin^{-1} z$).

Let
$$w = \sin^{-1} z$$
, then $z = \sin w$.
[We want to solve for w since it equals $\sin^{-1} z$.]

Then $z = \underbrace{\frac{e^{iw} - e^{-iw}}{2i}}_{2i}$ by the definition of $\sin w$.

Multiply both sides by $2ie^{iw}$:

$$2ize^{iw} = \frac{e^{iw} - e^{-iw}}{2i} \cdot 2ie^{iw}$$
$$= \underline{e^{2iw} - 1}$$

 $\Rightarrow e^{2iw} - 2ize^{iw} - 1 = 0 \qquad \qquad \text{But } e^{2iw} = \left(\underline{e^{iw}}\right)^2$

So $(e^{iw})^2 - 2iz(e^{iw}) - 1 = 0$ is a quadratic equation in <u> e^{iw} </u>.

[Given a complex quadratic equation $az^2 + bz + c = 0$, the quadratic formula (for complex variables) is $z = \frac{-b + (b^2 - 4ac)^{1/2}}{2a}$ See Exercise 8(a), Sec. 10. Be sure to use proper notation.]

Applying this formula to the above equation yields:

$$e^{iw} = \frac{2iz + \left[(-2iz)^2 - 4(1)(-1)\right]^{1/2}}{2(1)} = \frac{2iz + \left[-4z^2 + 4\right]^{1/2}}{2} = \frac{2iz + \left[4(1-z^2)\right]^{1/2}}{2} = \frac{2iz + 2\left(1-z^2\right)^{1/2}}{2}$$

So $e^{iw} = iz + (1 - z^2)^{1/2}$

[Note: The RHS is double-valued since there are exactly 2 roots.]

Solve for w by taking the logarithm of both sides:

$$\log(e^{iw}) = \log\left[iz + (1 - z^2)^{1/2}\right]$$

iw = log $\left[iz + (1 - z^2)^{1/2}\right]$
w = -i log $\left[iz + (1 - z^2)^{1/2}\right]$

Therefore, since $w = \underline{\sin^{-1} z}$ from the very beginning, we have

 $\boxed{\cos^{-1} z = -i \log \left[z + i \left(1 - z^2 \right)^{1/2} \right]}$

$$\sin^{-1} z = -i \log \left[iz + \left(1 - z^2\right)^{1/2} \right]$$

 $\boxed{\tan^{-1} z = \frac{i}{2} \log \frac{i+z}{i-z}}$

Similarly,

2. Consider the expression for $\sin^{-1} z$ above. Is it single-valued, double-valued, or multiple(more than 2)-valued? [You may need to check your answer after doing problem #3.]

It is multiple-valued because of the logarithm.

3. Fill in the blanks to find $\sin^{-1}\sqrt{5}$.

$$\sin^{-1}\sqrt{5} = -i \log \left[i \sqrt{5} + (1 - \underline{5})^{1/2}\right]$$

$$= -i \log \left[i\sqrt{5} + (-4)^{1/2}\right] \quad \text{Luckily, we know } (-4)^{1/2} = \underline{\pm 2i} \quad \text{w/o needing polar representation.}$$

$$= -i \log \left[i\sqrt{5} \pm \underline{2i}\right]$$

$$= -i \log \left[(\sqrt{5} \pm 2)i\right]$$

$$= -i \left[\ln \left| (\sqrt{5} \pm 2)i \right| + i \arg((\sqrt{5} \pm 2)i)\right]$$

$$= -i \left[\ln \left| (\sqrt{5} \pm 2)\right| + i \arg((\sqrt{5} \pm 2)i)\right] \quad \text{since } |i| = 1.$$
But $(\sqrt{5} \pm 2)i$ are both purely imaginary AND $\sqrt{5} \pm 2$ are both positive.

So they both have the same argument:

$$= -i \left[\ln(\sqrt{5} \pm 2) + i \left(\frac{\pi}{2} + 2n\pi \right) \right], \quad n = 0, \pm 1, \pm 2, \dots$$
$$= \left(\frac{\pi}{2} + 2n\pi \right) - i \ln(\sqrt{5} \pm 2), \quad n = 0, \pm 1, \pm 2, \dots$$

We could stop here, but to see how the book writes some answers, complete the following extra steps.

$$\sqrt{5} - 2 = (\sqrt{5} - 2) \cdot \frac{\sqrt{5} + 2}{\sqrt{5} + 2} = \frac{5 - 4}{\sqrt{5} + 2} = \frac{1}{\sqrt{5} + 2}$$
 [Simplify.]

 So

$$\ln(\sqrt{5} - 2) = \ln\left(\frac{1}{\sqrt{5} + 2}\right) = \ln(\sqrt{5} + 2)^{-1} = -\frac{\ln(\sqrt{5} + 2)}{\ln(\sqrt{5} + 2)}$$

In other words, $\ln(\sqrt{5} \pm 2) = \pm -\frac{\ln(\sqrt{5} + 2)}{\ln(\sqrt{5} + 2)}$.

So the answer above can be written as $\sin^{-1}(\sqrt{5}) = \left(\frac{\pi}{2} + 2n\pi\right) \pm i\ln(\sqrt{5} + 2), \quad n = 0, \pm 1, \pm 2, \dots$

Sketch the values in the complex plane.

[Go back to question number 2 – did you answer it correctly?]

4. Look in your book and write down the definitions for the inverse hyperbolic functions in terms of logarithms. 8th edition, Section 3.36 or 9th edition, Section 3.40

$\sinh^{-1} z = \log \left[z + \left(z^2 + 1 \right)^{1/2} \right]$	\cosh^{-1}	$-1 z = \log \left[z + \left(z^2 \right) \right]$	$(-1)^{1/2}$	$\tanh^{-1} z =$	$\frac{1}{2}\log\frac{1+z}{1-z}$
---	--------------	---	--------------	------------------	----------------------------------

5. Find all the values of $\cosh^{-1}(3i)$.

[Be careful when finding the argument(s).]

Sketch the values in the complex plane.

6. If we make a branch cut so that the inverse trigonometric functions are single-valued and analytic, then the derivatives are defined as: [Look up any missing formulas.]

$$\frac{d}{dz} \left[\sin^{-1} z \right] = \frac{1}{(1-z^2)^{1/2}} \qquad \qquad \frac{d}{dz} \left[\cos^{-1} z \right] = -\frac{1}{(1-z^2)^{1/2}} \qquad \qquad \frac{d}{dz} \left[\tan^{-1} z \right] = \frac{1}{1+z^2}$$

Fill in the blanks to derive the derivative of $\sin^{-1} z$

Let $w = \sin^{-1} z$. [So $\frac{dw}{dz} = \frac{d}{dz} [\sin^{-1} z]$ and therefore we need to find $\frac{dw}{dz}$]

Then $\underline{\sin w} = z$

Implicitly differentiate both sides

[Remember w is a function of z.]

 $\frac{d}{dz} [\sin w] = \frac{d}{dz} [z]$ $\underline{\cos w} \frac{dw}{dz} = 1$

Then $\frac{dw}{dz} = \frac{1}{\cos w}$ (*) [But we need $\frac{dw}{dz}$ as a function of z.]

From the identity $\cos^2 w + \sin^2 w = 1$, we get $\cos w = (1 - \sin^2 w)^{1/2}$.

But from above, $\sin w = z$, so $\cos w = (1 - \sin^2 w)^{1/2} = (1 - z^2)^{1/2}$

Substitute this expression into (*) to get $\frac{dw}{dz} = \frac{1}{(1-z^2)^{1/2}}$. i.e. $\left[\frac{d}{dz} \left[\sin^{-1}z\right] = \frac{1}{(1-z^2)^{1/2}}\right]$

Homework 8th Edition Section 3.36[9th Edition, Section 3.40], p. 114: #1(sketch values in the complex plane), 2, 3, 5 Additional Problem: I. Given $\cos^{-1}\left(\frac{5}{3}\right)$,

- (a). Find all values.
- (b). Find the value using the principal branch of $\log z$ and the principal branch of $z^{1/2}$ or state why it is undefined.
- (c). Find the value using the principal branch of $\log z$ and the branch $z^{1/2} = \sqrt{r}e^{i\theta/2}$ $(r > 0, 0 < \theta < 2\pi)$ for $z^{1/2}$ or state why it is undefined.
- (d). Find the derivative of $\cos^{-1}(z)$ at $z = \frac{5}{3}$ using the branches from part (a) or state why it is undefined.

(e). Find the derivative of $\cos^{-1}(z)$ at $z = \frac{5}{3}$ using the branches from part (b) or state why it is undefined.