More Logarithmic Properties and The Complex Power Function	Page 1
Recall $e^{\log z} = z$ for all $z \in \mathbb{C}$, $z \neq 0$, but $\log e^z = z + _$	
So $f(z) = e^z$ and $g(z) = \log z$ do not satisfy the cancelation properties of function because $f(z)$ is not one-to-one on its domain \mathbb{C} .	ons. This happens
However, if we restrict the domain of $f(z) = e^z$ to the fundamental region $-\infty < x < \infty, -\pi < \infty$ is on its domain and an inverse function exists, which is $f^{-1} = $	$y \leq \pi$, then $f(z)$
Properties	
(a). $\log z_1 z_2 =$ (b). $\log \left(\frac{z_1}{z_2}\right) =$	
<u>PROOF</u> (a) $\log z_1 + \log z_2 = \ln z_1 + i \arg z_1 + $	
$= \ln z_1 + \ln z_2 + i(___)$	
= + $i \arg z_1 z_2$ by properties of ln, abs. val. (for real \neq	\mathcal{L} 's) and arg (Sec. 1.8).
$= \log(\underline{\qquad})$	

1. Verify the above properties for $z_1 = -1 + i$ and $z_2 = -i$.

(a). LHS =

RHS =

(b). LHS =

 $\mathrm{RHS} =$

2. Find two complex numbers to show that the above properties do not necessarily hold for the principle value $\log z$.

(a). LHS =

 $\mathrm{RHS} =$

(b). Note: 1(b) should already show this.

More Properties

(a).
$$z^{n} = e^{n \log z}$$
, for $n = 0, \pm 1, \pm 2, ...$
(b). $z^{\frac{1}{n}} = e^{\frac{1}{n} \log z}$, for $z \neq 0$, $n = 0, \pm 1, \pm 2, ...$ [Multiple-valued]
PROOF (a) Let $z = re^{i\theta}$, then $e^{n \log z} = e^{n}$]
 $= e^{n \ln r} \cdot e^{in\theta} \cdot e^{i2n\pi}$
 $= e^{-} \cdot e^{in\theta} \cdot \underline{\qquad}$
 $= r^{n}e^{in\theta}$
 $= \underline{\qquad}$ \blacksquare
PROOF (b) Case 1: $n \in \mathbb{Z}^{+}$

Let
$$z = re^{i\theta}$$
, then $\exp\left(\frac{1}{n}\log z\right) = \exp\left(\frac{1}{n}[\ln r + i(\Theta + 2k\pi)]\right)$ $k = 0, \pm 1, \pm 2, \dots$
 $= \exp\left(\frac{1}{n}\ln r + i\left(\begin{array}{c} \right)\right)$ $k = 0, \pm 1, \pm 2, \dots$
 $= \underbrace{e^{\left(\ln r^{1/n}\right)} \cdot e^{\left(i\left(\frac{\Theta + 2k\pi}{n}\right)\right)}}_{k = 0, \pm 1, \pm 2, \dots}$
 $= e^{\left(\ln r^{1/n}\right)} \cdot e^{\left(i\left(\frac{\Theta + 2k\pi}{n}\right)\right)}$ $k = 0, \pm 1, \pm 2, \dots$
 $= \underbrace{e^{\left(\ln r^{1/n}\right)} \cdot e^{\left(i\left(\frac{\Theta + 2k\pi}{n}\right)\right)}}_{k = 0, \pm 1, \pm 2, \dots}$
 $= \underbrace{2^{1/n}$ by definition and since
it yields distinct values only for $k = 0, 1, 2, \dots$,

Case 2: $n \in \mathbb{Z}^{-}$ [One of the assigned homework problems]

Since the two properties above hold for powers that are integers and their reciprocals, we suspect that it might hold for ______ complex numbers c.

<u>DEF</u> The Complex Power Function $(z \neq 0)$ is defined as $z^c =$ _____ for any $c \in \mathbb{C}$.

Is this function single-valued or multiple-valued?

3. Evaluate the following and sketch the answer(s) in the complex plane:

]

(a).
$$i^{3i}$$

 $i^{3i} = e^{3i \log i} = e^{3i} [$
 $= e^{3i [\ln 1 + i(\pi/2 + 2n\pi)]}$
 $= e^{3i} [$]
 $= e^{-3\pi/2 - 6n\pi}$

(b). $(-\sqrt{3}-i)^i$

4. Use properties of the exponential function to show that $z^{-c} = \frac{1}{z^c}$

5. Evaluate $(-\sqrt{3} - i)^{-i}$

<u>DEF</u> P.V. $z^c = e^{c \operatorname{Log} z}$, is the Principle Value of z^c

Using the Principle Branch of Log z [i.e. |z| > 0 and $-\pi$ _____Arg z_____ π], P.V. z^c defines the Principle Branch of z^c .

6. Find P.V. $(-\sqrt{3} - i)^i$

Recall, that for <u>any</u> branch of $\log z$ ($r > 0, \alpha < \theta <$ _____), $\log z = \ln r + i\theta$ is ______--valued.

7. Using such a branch and the definition of z^c , fill in the steps to show that $\frac{d}{dz}[z^c] = cz^{c-1}$ $\frac{d}{dz} \left[z^c \right] = \frac{d}{dz} \left[e^{c \log z} \right]$ by definition of the power function $= e^{c \log z} \cdot \frac{d}{dz} [$] by the chain rule $= e^{c \log z} \cdot c \cdot$ by the derivative of $\log z$ $= ce^{c\log z} \cdot \frac{1}{z}$ $= ce^{c\log z} \cdot z^{-1}$ by properties of z^c $= ce^{c\log z} \cdot e$ by definition of the power function $= ce^{c\log z - \log z}$ by properties of $\log z$ $= ce^{()\log z}$ $= cz^{c-1}$ by definition of the power function