Def The exponential function for complex numbers is defined by

$$
\exp (z)=e^{z}=e^{x+i y}=e^{x} e^{i y}
$$

Some Things Stay the Same

Basic Properties:
$e^{z_{1}} e^{z_{2}}=e^{z_{1}+z_{2}}$
$\frac{e^{z_{1}}}{e^{z_{2}}}=e^{z_{1}-z_{2}}$
$\left(e^{z}\right)^{n}=e^{n z}$
$e^{0}=1 \quad\left[\right.$ but... $\left.{ }^{1}\right]$

The Derivative:
$\frac{d}{d z}\left[e^{z}\right]=e^{z}$

New for e^{z} IN the Complex Plane

- $\left|e^{z}\right|=\left|e^{x} e^{i y}\right| \quad$ by definition of e^{z}.
$=\left|e^{x}\right| \cdot\left|e^{i y}\right| \quad$ by properties of modulus.
$=\left|e^{x}\right| \cdot 1 \quad$ since $e^{i y}$ lies on the unit circle.
$=e^{x} \quad$ since e^{x} is a positive real number.

$$
\left|e^{z}\right|=e^{x}
$$

- Since $\arg z$ is the set of all angles θ that represent the same number and $e^{z}=e^{x} e^{i y} \Longrightarrow$

$$
\begin{aligned}
\arg (z)= & y+2 n \pi \\
& n=0, \pm 1, \pm 2, \ldots
\end{aligned}
$$

- $e^{z+2 \pi i}=e^{z} \cdot \underline{e^{2 \pi i}}=e^{z} \cdot 1=\underline{e^{z}}$ i.e. $f(z+2 \pi i)=f(z)$ for all z.
The complex exponential function $f(z)=e^{z}$ is periodic \quad with period $\quad 2 \pi i$
- Ex: Evaluate $4 e^{i \pi}=$ \qquad
The complex exponential function $f(z)=e^{z}$ may return \quad negative__real numbers.

[^0]EX: Solve $e^{x}=3$ for $x \in \mathbb{R}$.

Is the solution unique? Yes

Ex: Solve $e^{z}=3$ for $z \in \mathbb{C}$.
Soln: Let $z=x+i y$. Then fill in the blanks below to find x and y.

$$
\begin{aligned}
e^{z} & =3 & & \\
e^{x+i y} & \left.=3 e^{i(} \quad 0+2 n \pi\right) & & n=0, \pm 1, \pm 2, \ldots \\
e^{x} e^{i y} & \left.=3 e^{i(} 0+2 n \pi\right) & & n=0, \pm 1, \pm 2, \ldots
\end{aligned}
$$

Equating the magnitudes $\Longrightarrow: e^{x}=$ \qquad Equating the argument $\Longrightarrow: y=$ \qquad $0+2 n \pi$

Solving for x and $y \Longrightarrow: x=$ \qquad and $y=$ \qquad .

So $z=x+i y=\underline{\ln 3}+i \quad(2 n \pi) \quad, \quad n=0, \pm 1, \pm 2, \ldots$
Is the solution unique? No

The above two examples illustrate the following point:
There are_infinitely_many solutions to the complex equation $e^{z}=w$.

Ex: Solve $e^{z}=3-\sqrt{3} i$. [Use the method of the 2nd example above and write your answer in the form $x+i y$.]

[^0]: ${ }^{1}$ [The "but..." above refers to the fact that $e^{z}=1$ not only at $z=0$, but also at $z=$ \qquad $2 n \pi i$.]

