$\underline{\text{DEF}}$ The exponential function for complex numbers is defined by

 $\exp(z) = e^z = e^{x+iy} = e^x e^{iy}$

Some Things Stay the Same

Basic Properties:

 $e^{z_1}e^{z_2} = e^{z_1+z_2}$ $\frac{e^{z_1}}{e^{z_2}} = e^{z_1-z_2}$ $(e^z)^n = e^{nz}$ $e^0 = 1$ [but...¹]

The Derivative:

 $\frac{d}{dz}\left[e^{z}\right] = e^{z}$

<u>New for e^z in the Complex Plane</u>

- $|e^{z}| = |e^{x}e^{iy}|$ by definition of e^{z} . $= |e^{x}| \cdot \underline{|e^{iy}|}$ by properties of modulus. $= |e^{x}| \cdot \underline{1}$ since e^{iy} lies <u>on the unit circle</u>. $= e^{x}$ since e^{x} is a <u>positive</u> real number. $||e^{z}| = e^{x}$
- Since arg z is the set of all angles θ that represent the same number and $e^z = e^x e^{iy} \Longrightarrow$

 $\arg(z) = y + \frac{2n\pi}{n}$ $n = 0, \pm 1, \pm 2, \dots$

• $e^{z+2\pi i} = e^z \cdot \underline{e^{2\pi i}} = e^z \cdot 1 = \underline{e^z}$ i.e. $f(z+2\pi i) = f(z)$ for all z.

The *complex* exponential function $f(z) = e^z$ is <u>periodic</u> with period <u> $2\pi i$ </u>

• <u>Ex</u>: Evaluate $4e^{i\pi} = -4$

The *complex* exponential function $f(z) = e^z$ may return <u>negative</u> real numbers.

[y in radians]

¹[The "but..." above refers to the fact that $e^{z} = 1$ not only at z = 0, but also at $z = \underline{2n\pi i}$.]

<u>Ex</u>: Solve $e^x = 3$ for $x \in \mathbb{R}$.

Is the solution unique? Yes

Ex: Solve $e^z = 3$ for $z \in \mathbb{C}$. $e^z = 3$ $e^{x+iy} = 3e^{i(-0+2n\pi)}$ $n = 0, \pm 1, \pm 2, \dots$ $e^x e^{iy} = 3e^{i(-0+2n\pi)}$ $n = 0, \pm 1, \pm 2, \dots$ Equating the magnitudes \Longrightarrow : $e^x = _3$ Equating the magnitudes \Longrightarrow : $e^x = _3$ Equating the argument \Longrightarrow : $y = _0 + 2n\pi$ Solving for x and $y \Longrightarrow$: $x = _\ln 3$ and $y = _2n\pi$. So $z = x + iy = _\ln 3$ $+ i _(2n\pi)$, $n = 0, \pm 1, \pm 2, \dots$ Is the solution unique? No

The above two examples illustrate the following point:

There are <u>infinitely</u> many solutions to the *complex* equation $e^z = w$.

<u>Ex</u>: Solve $e^z = 3 - \sqrt{3}i$.

[Use the method of the 2nd example above and write your answer in the form x + iy.]

Homework 8th Edition Section 3.29, p. 93: #1, 3, 6, 8, 10