$f'(z_0) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$ <u>DEF</u> The <u>derivative of f at z_0 , denoted $f'(z_0)$ is</u>

An alternate form is

$$f'(z_0) = \lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z}$$
 [Fill in missing limit.]

Note: f'(z) as a function can be represented as $f'(z) = \frac{df}{dz} = \lim_{\Delta z \to 0} \frac{f(z + \Delta z) - f(z)}{\Delta z}$ [Fill in missing limit.]

1. Given $f(z) = z^2$, use the limit definition to find f'(z).

$$f'(z) = \lim_{\Delta z \to 0} \frac{f(z + \Delta z) - f(z)}{\Delta z} = \lim_{\Delta z \to 0} \frac{(z + \Delta z)^2 - z^2}{\Delta z} =$$

2. Given $f(z) = |z|^2$, use the limit definition to

($z \rightarrow 0$ z

i.e. $f'(0) = \underline{0}$ for $f(z) = |z|^2$.

(a). Find
$$f'(0)$$

 $f'(0) = \lim_{z \to 0} \frac{f(z) - f(0)}{z - 0} =$

[Fill in missing term.]

[Hint: At some point use $|z|^2 = z\bar{z}$]

[Use version 1.]

[Continuation of problem 2 with $f(z) = |z|^2$.]

(b). Show that f'(z) does not exist for all $z \neq 0$.

$$f'(z) = \lim_{\Delta z \to 0} \frac{f(z + \Delta z) - f(z)}{\Delta z}$$

$$= \lim_{\Delta z \to 0} \frac{|z + \Delta z|^2 - |z|^2}{\Delta z}$$

$$= \lim_{\Delta z \to 0} \frac{(z + \Delta z)(\overline{z + \Delta z}) - z\overline{z}}{\Delta z}$$

$$= \lim_{\Delta z \to 0} \frac{(z + \Delta z)(\overline{z} + \overline{\Delta z}) - z\overline{z}}{\Delta z}$$

$$= \lim_{\Delta z \to 0} \frac{z\overline{z} + z\overline{\Delta z} + \overline{z}\Delta z + \Delta z\overline{\Delta z} - z\overline{z}}{\Delta z}$$

$$= \lim_{\Delta z \to 0} \frac{z\overline{\Delta z} + \overline{z}\Delta z + \Delta z\overline{\Delta z}}{\Delta z}$$

$$= \lim_{\Delta z \to 0} \frac{z\overline{\Delta z} + \overline{z}\Delta z + \Delta z\overline{\Delta z}}{\Delta z}$$

$$= \lim_{\Delta z \to 0} \frac{z\overline{\Delta z} + \overline{z}\Delta z + \Delta z\overline{\Delta z}}{\Delta z}$$

$$= \lim_{\Delta z \to 0} \frac{z\overline{\Delta z} + \overline{z}\Delta z}{\Delta z} + \overline{z} + \overline{\Delta z} = \lim_{\Delta z \to 0} (\overline{\Delta z} + \overline{z} + \frac{z\overline{\Delta z}}{\Delta z})$$

$$= \lim_{\Delta z \to 0} \overline{\Delta z} + \lim_{\Delta z \to 0} \overline{z} + \lim_{\Delta z \to 0} \frac{z\overline{\Delta z}}{\Delta z}$$

$$= 0 + \overline{z} + z \cdot \lim_{\Delta z \to 0} (\frac{\overline{\Delta z}}{\Delta z})$$

But the $\lim_{\Delta z \to 0} \frac{\overline{\Delta z}}{\Delta z}$ DNE since if $\Delta z = \Delta x + i\Delta y$ approaches 0 along two (well-chosen) different paths, you get different limits.

[Shown the other day as $\lim_{z\to 0} \frac{\overline{z}}{z}$ DNE.]

Therefore, since this limit DNE, the derivative f'(z) _____ for $z \neq 0$.

[Use version 2.]

- **3.** Consider problem 1 again where $f(z) = z^2$.
- (a). What did you get for f'(z)? Would your intuition have suggested this would have been the answer?

(b). Let z = x + iy and write f(z) in the form u(x, y) + iv(x, y).

- (c). From part (b) find the following partial derivatives u_x, u_y, v_x , and v_y .
- (d). Let z = x + iy and write f'(z) in the form s(x, y) + it(x, y).
- (e). Can you see a connection between the partial derivatives found in part (c) and the form of the derivative in part (d)?
- 4. Consider problem 2 again where $f(z) = |z|^2$.
- (a). Let z = x + iy and write f(z) in the form u(x, y) + iv(x, y).
- (b). From part (a) find the following partial derivatives u_x, u_y, v_x , and v_y .
- (c). What is different about these partial derivatives in part (b) and those found in problem 3 part (c)?

 $\text{Comments about } f(z) = |z|^2 = x^2 + y^2 \quad \text{ or } \quad f(z) = u(x,y) + iv(x,y) \text{ where } u(x,y) = x^2 + y^2 \text{ and } v(x,y) = 0.$

 $f'(z) = \frac{df}{dz}$ **DNE** (for $z \neq 0$) even though:

- The partial derivatives of u and v exist:
- The partial derivatives of f exist:
- The function $f(z) = |z|^2$ is continuous for all z.

$$\overline{\partial x} = 2x, \overline{\partial y} = 2y, \overline{\partial x} = 0, \text{ and } \overline{\partial y} = 0$$

 $\overline{\partial f} = 2x \text{ and } \overline{\partial f} = 2y$

 $\partial u \quad \partial u \quad \partial v \quad \partial v \quad \partial v \quad \partial v$

[i.e. Continuity does not imply differentiability.]

Can we find conditions on u(x, y) and v(x, y) that will guarantee the existence of the derivative f'(z)? [Let's try:] Assume that f'(z) exists and let f(z) = u(x, y) + iv(x, y). Also, let $\Delta z = \Delta x + i\Delta y$. Then

$$\begin{aligned} f'(z) &= \lim_{\Delta z \to 0} \frac{f(z + \Delta z) - f(z)}{\Delta z} = \lim_{(\Delta x, \Delta y) \to (0,0)} \frac{u(x + \Delta x, y + \Delta y) + iv(x + \Delta x, y + \Delta y) - [u(x, y) + iv(x, y)]}{\Delta x + i\Delta y} \\ &= \lim_{(\Delta x, \Delta y) \to (0,0)} \frac{u(x + \Delta x, y + \Delta y) - u(x, y) + i[v(x + \Delta x, y + \Delta y) - v(x, y)]}{\Delta x + i\Delta y} \end{aligned}$$

Since we have assumed that the derivative exists, then the limit must also exist and be independent of path.

Path 1: $\Delta y = 0, \Delta x \to 0 \Longrightarrow f'(z) = \lim_{\Delta x \to 0} \frac{u(x + \Delta x, y) - u(x, y) + i [v(x + \Delta x, y) - v(x, y)]}{\Delta x}$ $= \lim_{\Delta x \to 0} \frac{u(x + \Delta x, y) - u(x, y)}{\Delta x} + i \lim_{\Delta x \to 0} \frac{v(x + \Delta x, y) - v(x, y)}{\Delta x}$ $= \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} \qquad (*)$ Path 2: $\Delta x = 0, \Delta y \to 0 \Longrightarrow f'(z) = \lim_{\Delta y \to 0} \frac{u(x, y + \Delta y) - u(x, y) + i [v(x, y + \Delta y) - v(x, y)]}{i\Delta y} \qquad \text{mult. by } \frac{-i}{-i}$ $= \lim_{\Delta y \to 0} \frac{v(x, y + \Delta y) - v(x, y)}{\Delta y} - i \lim_{\Delta y \to 0} \frac{u(x, y + \Delta y) - u(x, y)}{\Delta y}$ $= \frac{\partial v}{\partial y} - i \frac{\partial u}{\partial y} \qquad (**)$

Since these limits must be equal for the derivative to exist \Rightarrow

∂u	∂v	∂u	∂v
$\left \frac{\partial x}{\partial x} \right $	$= \frac{\partial y}{\partial y}$ and	$\operatorname{Id} \frac{\partial y}{\partial y} =$	$-\overline{\partial x}$
Cauchy-Riemann Equations			