DEF The derivative of $f$ at $z_{0}$, denoted $f^{\prime}\left(z_{0}\right)$ is $\quad f^{\prime}\left(z_{0}\right)=\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}} \quad$ [Fill in missing term.]

An alternate form is

$$
f^{\prime}\left(z_{0}\right)=\lim _{\Delta z \rightarrow 0} \frac{f\left(z_{0}+\Delta z\right)-f\left(z_{0}\right)}{\Delta z}
$$

[Fill in missing limit.]

Note: $f^{\prime}(z)$ as a function can be represented as $f^{\prime}(z)=\frac{d f}{d z}=\lim _{\Delta z \rightarrow 0} \frac{f(z+\Delta z)-f(z)}{\Delta z}$ [Fill in missing limit.]

1. Given $f(z)=z^{2}$, use the limit definition to find $f^{\prime}(z)$.
$f^{\prime}(z)=\lim _{\Delta z \rightarrow 0} \frac{f(z+\Delta z)-f(z)}{\Delta z}=\lim _{\Delta z \rightarrow 0} \frac{(z+\Delta z)^{2}-z^{2}}{\Delta z}=$
2. Given $f(z)=|z|^{2}$, use the limit definition to
(a). Find $f^{\prime}(0)$

$$
f^{\prime}(0)=\lim _{z \rightarrow 0} \frac{f(z)-f(0)}{z-0}=
$$

i.e. $f^{\prime}(0)=$ $\qquad$ for $f(z)=|z|^{2}$.
[Continuation of problem 2 with $f(z)=|z|^{2}$.]
(b). Show that $f^{\prime}(z)$ does not exist for all $z \neq 0$.

$$
\begin{aligned}
f^{\prime}(z) & =\lim _{\Delta z \rightarrow 0} \frac{f(z+\Delta z)-f(z)}{\Delta z} \\
& =\lim _{\Delta z \rightarrow 0} \frac{|z+\Delta z|^{2}-|z|^{2}}{\Delta z} \\
& =\lim _{\Delta z \rightarrow 0} \frac{(z+\Delta z)(\overline{z+\Delta z})-z \bar{z}}{\Delta z} \\
& =\lim _{\Delta z \rightarrow 0} \frac{(z+\Delta z)(\bar{z}+\overline{\Delta z})-z \bar{z}}{\Delta z} \\
& =\lim _{\Delta z \rightarrow 0} \frac{z \bar{z}+z \overline{\Delta z}+\bar{z} \Delta z+\Delta z \overline{\Delta z}-z \bar{z}}{\Delta z} \\
& =\lim _{\Delta z \rightarrow 0} \frac{z \overline{\Delta z}+\bar{z} \Delta z+\Delta z \overline{\Delta z}}{\Delta z} \\
& =\lim _{\Delta z \rightarrow 0} \\
& \left.=\lim _{\Delta z \rightarrow 0} \frac{z \overline{\Delta z}}{\Delta z}+\bar{z}+\overline{\Delta z}\right)=\lim _{\Delta z \rightarrow 0}\left(\overline{\Delta z}+\bar{z}+\frac{z \overline{\Delta z}}{\Delta z}\right) \\
& =0+\bar{z}+z \cdot \lim _{\Delta z \rightarrow 0} \bar{z}+\lim _{\Delta z \rightarrow 0} \frac{z \overline{\Delta z}}{\Delta z} \\
& \left(\frac{\Delta z}{\Delta z}\right)
\end{aligned}
$$

But the $\lim _{\Delta z \rightarrow 0} \frac{\overline{\Delta z}}{\Delta z}$ DNE since if $\Delta z=\Delta x+i \Delta y$ approaches 0 along two (well-chosen) different paths, you get different limits.

$$
\left[\text { Shown the other day as } \lim _{z \rightarrow 0} \frac{\bar{z}}{z}\right. \text { DNE.] }
$$

Therefore, since this limit DNE, the derivative $f^{\prime}(z)$ DNE for $z \neq 0$.
3. Consider problem 1 again where $f(z)=z^{2}$.
(a). What did you get for $f^{\prime}(z)$ ? Would your intuition have suggested this would have been the answer?
(b). Let $z=x+i y$ and write $f(z)$ in the form $u(x, y)+i v(x, y)$.
(c). From part (b) find the following partial derivatives $u_{x}, u_{y}, v_{x}$, and $v_{y}$.
(d). Let $z=x+i y$ and write $f^{\prime}(z)$ in the form $s(x, y)+i t(x, y)$.
(e). Can you see a connection between the partial derivatives found in part (c) and the form of the derivative in part (d)?
4. Consider problem 2 again where $f(z)=|z|^{2}$.
(a). Let $z=x+i y$ and write $f(z)$ in the form $u(x, y)+i v(x, y)$.
(b). From part (a) find the following partial derivatives $u_{x}, u_{y}, v_{x}$, and $v_{y}$.
(c). What is different about these partial derivatives in part (b) and those found in problem 3 part (c)?

Comments about $f(z)=|z|^{2}=x^{2}+y^{2} \quad$ or $\quad f(z)=u(x, y)+i v(x, y)$ where $u(x, y)=x^{2}+y^{2}$ and $v(x, y)=0$.
$\underline{f^{\prime}(z)=\frac{d f}{d z} \text { DNE (for } z \neq 0 \text { ) even though: }}$

- The partial derivatives of $u$ and $v$ exist:

$$
\frac{\partial u}{\partial x}=2 x, \frac{\partial u}{\partial y}=2 y, \frac{\partial v}{\partial x}=0, \text { and } \frac{\partial v}{\partial y}=0
$$

- The partial derivatives of $f$ exist:

$$
\frac{\partial f}{\partial x}=2 x \text { and } \frac{\partial f}{\partial y}=2 y
$$

- The function $f(z)=|z|^{2}$ is continuous for all $z$.
[i.e. Continuity does not imply differentiability.]

Can we find conditions on $u(x, y)$ and $v(x, y)$ that will guarantee the existence of the derivative $f^{\prime}(z)$ ? [Let's try:] Assume that $f^{\prime}(z)$ exists and let $f(z)=u(x, y)+i v(x, y)$. Also, let $\Delta z=\Delta x+i \Delta y$. Then

$$
\begin{aligned}
f^{\prime}(z) & =\lim _{\Delta z \rightarrow 0} \frac{f(z+\Delta z)-f(z)}{\Delta z}=\lim _{(\Delta x, \Delta y) \rightarrow(0,0)} \frac{u(x+\Delta x, y+\Delta y)+i v(x+\Delta x, y+\Delta y)-[u(x, y)+i v(x, y)]}{\Delta x+i \Delta y} \\
& =\lim _{(\Delta x, \Delta y) \rightarrow(0,0)} \frac{u(x+\Delta x, y+\Delta y)-u(x, y)+i[v(x+\Delta x, y+\Delta y)-v(x, y)]}{\Delta x+i \Delta y}
\end{aligned}
$$

Since we have assumed that the derivative exists, then the limit must also exist and be independent of path.

Path 1: $\Delta y=0, \Delta x \rightarrow 0 \Longrightarrow f^{\prime}(z)=\lim _{\Delta x \rightarrow 0} \frac{u(x+\Delta x, y)-u(x, y)+i[v(x+\Delta x, y)-v(x, y)]}{\Delta x}$

$$
\begin{align*}
& =\lim _{\Delta x \rightarrow 0} \frac{u(x+\Delta x, y)-u(x, y)}{\Delta x}+i \lim _{\Delta x \rightarrow 0} \frac{v(x+\Delta x, y)-v(x, y)}{\Delta x} \\
& =\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x} \tag{*}
\end{align*}
$$

Path 2: $\Delta x=0, \Delta y \rightarrow 0 \Longrightarrow f^{\prime}(z)=\lim _{\Delta y \rightarrow 0} \frac{u(x, y+\Delta y)-u(x, y)+i[v(x, y+\Delta y)-v(x, y)]}{i \Delta y} \quad$ mult. by $\frac{-i}{-i}$

$$
\begin{array}{ll}
=\lim _{\Delta y \rightarrow 0} \frac{v(x, y+\Delta y)-v(x, y)}{\Delta y}-i \lim _{\Delta y \rightarrow 0} \frac{u(x, y+\Delta y)-u(x, y)}{\Delta y} \\
=\quad \frac{\partial v}{\partial y}-i \frac{\partial u}{\partial y} & (* *) \tag{**}
\end{array}
$$

Since these limits must be equal for the derivative to exist $\Rightarrow$

$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} \text { and } \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}
$$

Cauchy-Riemann Equations

