Ex: Answer the following questions quickly, without work.
What are the square roots of 4 ? What are the square roots of -4 ? What is the cube root of -27 ?

Ex: What are the square roots of 4 ?
[Now we'll show the work in detail.]
i.e. They are solutions to the equation
$x^{2}-4=0 \quad \Rightarrow \quad x^{2}=4 \quad \Rightarrow \quad x= \pm \sqrt{4} \quad \Rightarrow \quad x= \pm 2 \quad$ [All the work is shown for you. No additional work necessary.]

Ex: What are the square roots of -4 ?
i.e. They are solutions to the equation
[Add work similar to the above example to find the roots.]
$x^{2}-(-4)=0 \quad x^{2}+4=0 \quad \Rightarrow$

Ex: What is the cube root of -27 ?
i.e. They are solutions to the equation
[Add work similar to the above example to find the roots.]
$x^{3}+27=0 \quad \Rightarrow$

Do you think $x=$ \qquad is the only cube root of -27 ?

Ex: What is the fifth root of 32 ?
i.e. They are solutions to the equation
[Add work similar to the above example to find the roots.]
\qquad

Do you think $x=$ \qquad is the only fifth root of 32 ?

Generalize:
What is the $n^{\text {th }}$ root of a (complex) number z_{0} ?
i.e. They are solutions to the equation \qquad

$$
\Rightarrow \quad z^{n}=z_{0}
$$

$$
\Rightarrow \quad z=z_{0}^{1 / n}
$$

The $n^{\text {th }} \operatorname{root(s)}$ of a (complex) number z_{0} are $\underline{\text { all }}$ the values z (unknown) such that

$$
z=z_{0}^{1 / n} \quad \text { or equivalently } \quad z^{n}=z_{0} \quad \text { where } z_{0} \text { and } n \text { are given. }
$$

For complex numbers, find all $\underline{z=r e^{i \theta}}$ such that $z^{n}=z_{0}$
[Note: If z is the unknown, then so are r and \qquad .]

Rewrite the equation $z^{n}=z_{0}$ in exponential form: $\Rightarrow \quad r^{n} e^{i n \theta}=r_{0} e^{i \theta_{0}}$

For these two complex numbers to be equal, $\quad r^{n}=\ldots \quad r_{0} \quad$ and $\quad n \theta=\theta_{0}+2 k \pi$ for $k=0, \pm 1, \pm 2, \ldots \ldots$
Solve for the unknowns r and $\theta: r=\ldots \sqrt[n]{r_{0}}=r_{0}^{1 / n} \quad$ and $\quad \theta=\frac{\theta_{0}}{n} \quad+\frac{2 k \pi}{n}$ for $k=0, \pm 1, \pm 2, \ldots$.
[Note: For complex numbers $r>0$ (specifically, $r_{0}>0$), so $\sqrt[n]{r_{0}}$ is a real-valued root.]

Substitute these values back into $z=r e^{i \theta}$. [The root(s) we were looking for.]
i.e. The $n^{\text {th }}$ root of a complex number is given by

$$
\left.z_{0}^{1 / n}=\sqrt[n]{r_{0}} e^{i\left(\frac{\theta_{0}}{n}+\frac{2 k \pi}{n}\right.}\right) \text { for } k=0, \pm 1, \pm 2, \ldots
$$

Ex: (a). Find all of the cube roots of -27
i.e. Find all z such that $z^{3}=$ \qquad -27 .

Write $z_{0}=-27$ in exponential form using the principle argument: $\quad z_{0}=-27=27 e^{i(} \pi \quad$) [Sketch, if helpful.]

So $r_{0}=$ \qquad and $\theta_{0}=$ \qquad .
[Use these specific values for r_{0} and θ_{0} in the formula on p .2]
$\left.\Rightarrow(-27)^{1 / 3}=\sqrt[3]{27} e^{i\left(\frac{\pi}{3}+\frac{2 k \pi}{3}\right.}\right)$ for $k=0, \pm 1, \pm 2, \ldots \quad$ Use formula on p. 2. $=3 e^{i\left(\frac{\pi}{3}+\frac{2 k \pi}{3}\right)}$ for $k=0, \pm 1, \pm 2, \ldots$
(b). List out the roots for $k=0,1,2,3,4$
$k=0: 3 e^{i \pi / 3}$
$k=1: 3 e^{i(\pi / 3+2 \pi / 3)}=3 e^{i \pi}$
$k=2: 3 e^{i 5 \pi / 3}$
$k=3: 3 e^{i 7 \pi / 3}$
$k=4: 3 e^{i 3 \pi}$
(c). Use the space above to lot these roots in the complex plane.

- Roots lie on a circle centered at the \qquad origin given by $|z|=$ \qquad 3 .
- Roots are evenly spaced, every $\frac{2 \pi}{3} \quad$ radians, around the circle. \quad Spaced every $\frac{2 \pi}{n} \quad$ radians.
- Roots form the vertices of a regular (equilateral) triangle.
- When $k=$ \qquad 3 the roots start repeating.

When \qquad $k=n$ the roots start repeating.

Only need to consider $k=0,1,2, \ldots$ \qquad $n-1$ for n distinct roots.

