Ex: Answer the following questions quickly, without work.

What are the square roots of 4?	What are the square roots of -4 ?	What is the cube root of -27 ?
---------------------------------	-------------------------------------	----------------------------------

$\underline{\mathbf{Ex}}$: What are the square roots of 4?	[Now we'll show the work in detail.]
i.e. They are solutions to the equation	
$x^2 - 4 = 0 \Rightarrow x^2 = 4 \Rightarrow x = \pm\sqrt{4} \Rightarrow x = \pm 2$	[All the work is shown for you. No additional work necessary.]

i.e. They are solutions to the equation [Add work similar to the above example to find the roots.] $x^2 - (-4) = 0$ $x^2 + 4 = 0$ \Rightarrow

 $\underline{\mathbf{Ex}}$: What is the cube root of -27?

<u>Ex</u>: What are the square roots of -4?

i.e. They are solutions to the equation [Add work similar to the above example to find the roots.] $x^3 + 27 = 0 \implies$

Do you think $x = \underline{-3}$ is the only cube root of -27?

<u>Ex</u>: What is the fifth root of 32?

i.e. They are solutions to the equation

[Add work similar to the above example to find the roots.]

 $\underline{x^5 - 32} = 0 \quad \Rightarrow \quad$

Do you think $x = \underline{2}$ is the only fifth root of 32?

Generalize:

What is the n^{th} root of a (complex) number z_0 ?

i.e. They are solutions to the equation $\frac{z^n-z_0}{\Rightarrow}=0$

The n^{th} root(s) of a (complex) number z_0 are <u>all</u> the values z (unknown) such that

 $\Rightarrow \qquad z = z_0^{1/n}$

 $z = z_0^{1/n}$ or equivalently $z^n = z_0$ where z_0 and n are given.

For complex numbers, find all $\underline{z = re^{i\theta}}$ such that $\underline{z^n = z_0}$ [Note: If z is the unknown, then so are r and $\underline{\theta}$.] Rewrite the equation $z^n = z_0$ in exponential form: $\Rightarrow \underline{r^n e^{in\theta}} = r_0 e^{i\theta_0}$ For these two complex numbers to be equal, $r^n = \underline{r_0}$ and $n\theta = \theta_0 + 2k\pi$ for $k = 0, \pm 1, \pm 2, \dots$ Solve for the unknowns r and θ : $r = \underline{\sqrt[n]{r_0} = r_0^{1/n}}$ and $\theta = \underline{\frac{\theta_0}{n}} + \frac{2k\pi}{n}$ for $k = 0, \pm 1, \pm 2, \dots$

[Note: For complex numbers r > 0 (specifically, $r_0 > 0$), so $\sqrt[n]{r_0}$ is a real-valued root.]

Substitute these values back into $z = re^{i\theta}$. [The root(s) we were looking for.]

i.e. The n^{th} root of a complex number is given by

$$z_0^{1/n} = \sqrt[n]{r_0} e^{i\left(-\frac{\theta_0}{n} + \frac{2k\pi}{n}\right)}$$
 for $k = 0, \pm 1, \pm 2, \dots$

i.e. Find all z such that $z^3 = -27$. <u>Ex</u>: (a). Find <u>all</u> of the cube roots of -27 $z_0 = -27 = 27e^{i(-\pi)}$ [Sketch, if helpful.] Write $z_0 = -27$ in exponential form using the principle argument: So $r_0 = \underline{27}$ and $\theta_0 = \underline{\pi}$. [Use these specific values for r_0 and θ_0 in the formula on p.2] $\Rightarrow (-27)^{1/3} = \sqrt[3]{27} e^{i\left(\frac{\pi}{3} + \frac{2k\pi}{3}\right)} \text{ for } k = 0, \pm 1, \pm 2, \dots$ Use formula on p. 2. $= 3e^{i\left(\frac{\pi}{3} + \frac{2k\pi}{3}\right)} \text{ for } k = 0, \pm 1, \pm 2, \dots$ Simplify. (b). List out the roots for k = 0, 1, 2, 3, 4 $k=0:3e^{i\pi/3}$ $k = 1: 3e^{i(\pi/3 + 2\pi/3)} = 3e^{i\pi}$ $k = 2: 3e^{i5\pi/3}$ $k = 3: 3e^{i7\pi/3}$ $k = 4 : 3e^{i3\pi}$

(c). Use the space above to lot these roots in the complex plane.

<u>OBSERVATIONS</u> :	Specific	and	Generalized
• Roots lie on a circle centered at the	e <u>origin</u> given by	z = 3.	Lie on circle $ z = \sqrt[n]{r_0}$.
• Roots are evenly spaced, every	$\frac{2\pi}{3}$ radians, around the	he circle. Spaced e	very $\frac{2\pi}{n}$ radians.
• Roots form the vertices of a regular	\cdot (equilateral) triangle.	Form vertices of a	a regular n -gon for $n \ge 3$.
• When $k = \underline{3}$ the roots start	repeating.	When $k = n$	the roots start repeating.
	Only need to consid	er $k = 0, 1, 2, \dots, \underline{n-n}$	1 for n distinct roots.