BASIC PROPERTIES

	Additive	Multiplicative		
Commutative:	$z_1 + z_2 = z_2 + z_1$	$z_1 z_2 = z_2 z_1$		
Associative:	$(z_1 + z_2) + z_3 = z_1 + (z_2 + z_3)$	$(z_1z_2)z_3 = z_1(z_2z_3)$		
Distributive:	$z_3(z_1+z_2) = z_3 z_1 + z_3 z_2$			
Identities:	0 + z = z	$1 \cdot z = z$		
Inverses:	For all $z \in \mathbb{C}$ \exists a unique additive inverse $-z$ such that $z + (-z) = 0$	For all $z \in \mathbb{C}, z \neq 0$ \exists a unique multiplicative inverse z^{-1} such that $z \cdot z^{-1} = 1$		

[Proofs follow from properties of real numbers and the definitions of complex numbers along with addition and multiplication.]

1. If z = (x, y), then clearly (from properties of real numbers) the additive inverse -z =.

2. But if z = (x, y), then z^{-1} is not so clear. Let's find it by letting $z^{-1} = (a, b)$ and finding a and b such that $z \cdot z^{-1} = 1$: $\implies (x, y)(a, b) = (1, 0)$

 \implies (______, ____) = (1,0) by the definition of multiplication.

Then ax - by = 1 and bx + ay = 0 which are 2 (nonlinear) equations and 2 unknowns a and b

From the first equation: $ax = 1 + by \Longrightarrow a =$

Substitute into the second equation:

 $bx + \underbrace{ \cdot y = 0 \qquad \implies \qquad bx^2 + (1 + by) \cdot y = 0 \qquad \implies \qquad bx^2 + \underbrace{ - - y = 0}_{bx^2 + by^2 = \underbrace{ - y = 0}_{bx^2 + by^2 = by^2$

Substitute this expression for b back into the expression for a:

$$a = \frac{1+by}{x} \implies a = \frac{1+y}{x} \implies a = \frac{1+y}{x} \implies a = \frac{1+\frac{-y}{x^2+y^2}y}{x} \cdot \frac{x^2+y^2}{x^2+y^2}$$

$$a = \frac{x^2}{x(x^2+y^2)} \implies a = \frac{x^2}{x(x^2+y^2)} \implies a = \frac{x^2}{x(x^2+y^2)} \implies a = \frac{x^2}{x(x^2+y^2)}$$
That is $z^{-1} = \left(\frac{x}{x^2+y^2}, \frac{-y}{x^2+y^2}\right) = \frac{x}{x^2+y^2} + i\frac{-y}{x^2+y^2}$

Def

 $z_1 - z_2 = z_1 + (-z_2) = z_1$ Subtraction

Γ

Division
$$\frac{z_1}{z_2} = z_1 z_2^{-1}, \quad z_2 \neq 0$$

By definition, $\frac{z_1}{z_2} = (x_1, y_1) \left(\frac{x_2}{x_2^2 + y_2^2}, \frac{-y_2}{x_2^2 + y_2^2} \right) = (x_1 + iy_1) \left(\frac{x_2}{x_2^2 + y_2^2} + i \frac{-y_2}{x_2^2 + y_2^2} \right)$, then FOIL.

In practice, rationalize the denominator

<u>Ex</u>: Divide (and simplify): $\frac{-2+i}{4-3i}$

(a). By definition

(b). By rationalizing

More Properties

(a).
$$\frac{1}{z} = z^{-1}$$
 (b). $\frac{z_1}{z_2} = z_1 \cdot \frac{1}{z_2}$ (c). $\frac{1}{z_1 z_2} = (z_1 z_2)^{-1} = z_1^{-1} z_2^{-1} = \frac{1}{z_1} \cdot \frac{1}{z_2}$

Proof (a): Let z = x + iy.

Then $\frac{1}{z} = \frac{1}{z} = \frac{1}{x+iy} \cdot \frac{1}{x^2+y^2} = \frac{x-iy}{x^2+y^2} = \frac{x}{x^2+y^2} + i$ $= z^{-1}$ (by definition of z^{-1} , see p.1)

(b) and (c) proved similarly [But don't prove.]

ANOTHER PROPERTY

If $z_1 z_2 = 0$, then either $z_1 = 0$ or $z_2 = 0$ (or both).

Proof: Assume $z_2 \neq 0$. Then exists. Let $z_1 z_2 = 0$ and multiply by $z_2^{-1} \Longrightarrow z_1 z_2 \cdot z_2^{-1} = 0 \cdot z_2^{-1} \Longrightarrow z_1 \cdot \underline{\qquad} = 0 \Longrightarrow z_1 = 0.$ Similarly, if $z_1 \neq 0$, then z_2 must equal 0.

GRAPHICAL VECTOR REPRESENTATION

The complex number $z =$	=(x,y)=x+iy can	be represented in the	plane by the vector ($\langle x, y \rangle.$	[Sketch below]
--------------------------	-----------------	-----------------------	-----------------------	-------------------------	----------------

<u>DEF</u> $|z| = \sqrt{x^2 + y^2}$ is the _____ of the complex number z. [i.e. _____]

EVEN MORE PROPERTIES

(a). $ \bar{z} = z $	(e). $\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$ (f). $\overline{z_1 \cdot z_2} = \overline{z_1} \cdot \overline{z_2}$	(i). $\left \frac{z_1}{z_2}\right = \frac{ z_1 }{ z_2 }$
(b). $z\bar{z} = z ^2$ (c). $z + \bar{z} = 2 \operatorname{Re}(z)$	(f). $\overline{\left(\frac{z_1}{z_2}\right)} = \overline{\frac{z_1}{z_2}}$	(j). $\operatorname{Re}(z) \leq z $
(d). $z - \overline{z} = 2i \operatorname{Im}(z)$	(h). $ z_1 z_2 = z_1 z_2 $	(k). $\operatorname{Im}(z) \leq z $

PROOF (f): Let $z_1 = x_1 + iy_1$ and $z_2 = x_2 + iy_2$.

Then
$$\overline{z_1 \cdot z_2} = \overline{(x_1 + iy_1) \cdot (x_2 + iy_2)} = \overline{(x_1 + iy_1) \cdot (x_2 + iy_2)} = \overline{(x_1 + iy_2)} = \overline{(x_1 + iy_1) \cdot (x_2 + iy_2)} = \overline{(x_1 + iy_1) \cdot (x_2 - iy_2)} = \overline{(x_1 - iy_2) \cdot (x_2 - iy_2)} = \overline{(x_1 - iy_2) \cdot (x_2 - iy_2)} = \overline{(x_1 - iy_1) \cdot (x_2 - iy$$

<u>PROOF (h)</u>: Consider $|z_1z_2|^2 = (z_1z_2)(\overline{z_1z_2})$ by property (b)

Then $|z_1z_2|^2 = (z_1z_2)(\overline{z_1z_2}) = (z_1z_2)(\overline{z_1}\ \overline{z_2}) = (z_1\overline{z_1})(z_2\overline{z_2}) =$

Take the square root: $|z_1 z_2| = |z_1| |z_2|$

Graphical Vector Addition and Subtraction

Page 4

<u>Ex</u>: Given $z_1 = 4 + 2i$ and $z_2 = 1 + 3i$

(a). Sketch z_1, z_2 , and $z_1 + z_2$. Verify your sketch by computing $z_1 + z_2$.

(b). Sketch z_1, z_2 , and $z_1 - z_2$. Verify your sketch by computing $z_1 - z_2$.

(c). Find the distance between z_1 and z_2 .