Basic Properties

Additive

Multiplicative

Commutative: $\quad z_{1}+z_{2}=z_{2}+z_{1}$
$z_{1} z_{2}=z_{2} z_{1}$

Associative: $\quad\left(z_{1}+z_{2}\right)+z_{3}=z_{1}+\left(z_{2}+z_{3}\right)$
$\left(z_{1} z_{2}\right) z_{3}=z_{1}\left(z_{2} z_{3}\right)$
Distributive:

$$
z_{3}\left(z_{1}+z_{2}\right)=z_{3} z_{1}+z_{3} z_{2}
$$

Identities:

$$
0+z=z
$$

$$
1 \cdot z=z
$$

Inverses:

For all $z \in \mathbb{C}$
\exists a unique additive inverse $-z$ such that $z+(-z)=0$

For all $z \in \mathbb{C}, z \neq 0$
\exists a unique multiplicative inverse z^{-1}
such that $z \cdot z^{-1}=1$
[Proofs follow from properties of real numbers and the definitions of complex numbers along with addition and multiplication.]

1. If $z=(x, y)$, then clearly (from properties of real numbers) the additive inverse $-z=$ \qquad -
2. But if $z=(x, y)$, then z^{-1} is not so clear.

Let's find it by letting $z^{-1}=(a, b)$ and finding a and b such that $z \cdot z^{-1}=1$:
$\Longrightarrow(x, y)(a, b)=(1,0)$
\qquad
\qquad $)=(1,0)$ by the definition of multiplication.

Then $a x-b y=1$ and $b x+a y=0$ which are 2 (nonlinear) equations and 2 unknowns a and b
From the first equation: $a x=1+b y \Longrightarrow a=$ \qquad
Substitute into the second equation:
$b x+\ldots \quad y=0 \quad b x^{2}+(1+b y) \cdot y=0 \quad \Longrightarrow \quad b x^{2}+\quad=0$

$b x^{2}+b y^{2}=\square \quad \Longrightarrow(\square)=-y \quad \Longrightarrow \quad$| $b=\frac{-y}{x^{2}+y^{2}}$ |
| :--- |

Substitute this expression for b back into the expression for a :
$a=\frac{1+b y}{x}$
$\Longrightarrow \quad a=\frac{1+\quad y}{x}$
$\Longrightarrow \quad a=\frac{1+\frac{-y}{x^{2}+y^{2}} y}{x} \cdot \frac{x^{2}+y^{2}}{x^{2}+y^{2}}$
$a=\frac{}{x\left(x^{2}+y^{2}\right)} \quad \Longrightarrow \quad a=\frac{x^{2}}{x\left(x^{2}+y^{2}\right)} \quad \Longrightarrow \quad a=$

That is $z^{-1}=\left(\frac{x}{x^{2}+y^{2}}, \frac{-y}{x^{2}+y^{2}}\right)=\frac{x}{x^{2}+y^{2}}+i \frac{-y}{x^{2}+y^{2}}$

DeF
Subtraction

$$
z_{1}-z_{2}=z_{1}+\left(-z_{2}\right)=
$$

Division

$$
\frac{z_{1}}{z_{2}}=z_{1} z_{2}^{-1}, \quad z_{2} \neq 0
$$

By definition, $\frac{z_{1}}{z_{2}}=\left(x_{1}, y_{1}\right)\left(\frac{x_{2}}{x_{2}^{2}+y_{2}^{2}}, \frac{-y_{2}}{x_{2}^{2}+y_{2}^{2}}\right)=\left(x_{1}+i y_{1}\right)\left(\frac{x_{2}}{x_{2}^{2}+y_{2}^{2}}+i \frac{-y_{2}}{x_{2}^{2}+y_{2}^{2}}\right)$, then FOIL.
In practice, rationalize the denominator
Ex: Divide (and simplify): $\frac{-2+i}{4-3 i}$
(a). By definition
(b). By rationalizing

More Properties
(a). $\frac{1}{z}=z^{-1}$
(b). $\frac{z_{1}}{z_{2}}=z_{1} \cdot \frac{1}{z_{2}}$
(c). $\frac{1}{z_{1} z_{2}}=\left(z_{1} z_{2}\right)^{-1}=z_{1}^{-1} z_{2}^{-1}=\frac{1}{z_{1}} \cdot \frac{1}{z_{2}}$

Proof (a): Let $z=x+i y$.
Then $\frac{1}{z}=\frac{1}{x+i y} \cdot \frac{1}{x-i y}=\frac{x}{x^{2}+y^{2}}=\frac{x}{x^{2}+y^{2}}+i \quad=z^{-1} \quad$ (by definition of z^{-1}, see p.1)
(b) and (c) proved similarly [But don't prove.]

Another Property

If $z_{1} z_{2}=0$, then either $z_{1}=0$ or $z_{2}=0$ (or both).

Proof: Assume $z_{2} \neq 0$. Then \qquad exists.

Let $z_{1} z_{2}=0$ and multiply by $z_{2}^{-1} \Longrightarrow z_{1} z_{2} \cdot z_{2}^{-1}=0 \cdot z_{2}^{-1} \Longrightarrow z_{1} \cdot \underline{ }=0 \Longrightarrow z_{1}=0$.
Similarly, if $z_{1} \neq 0$, then z_{2} must equal 0 .

Graphical Vector Representation
The complex number $z=(x, y)=x+i y$ can be represented in the plane by the vector $\langle x, y\rangle$. [Sketch below]

DEF $|z|=\sqrt{x^{2}+y^{2}}$ is the \qquad of the complex number z. [i.e. \qquad]

Even More Properties

(a). $|\bar{z}|=|z|$
(e). $\overline{z_{1}+z_{2}}=\overline{z_{1}}+\overline{z_{2}}$
(i). $\left|\frac{z_{1}}{z_{2}}\right|=\frac{\left|z_{1}\right|}{\left|z_{2}\right|}$
(b). $z \bar{z}=|z|^{2}$
(f). $\overline{z_{1} \cdot z_{2}}=\overline{z_{1}} \cdot \overline{z_{2}}$
(j). $\operatorname{Re}(z) \leq|z|$
(c). $z+\bar{z}=2 \operatorname{Re}(z)$
(g). $\overline{\left(\frac{z_{1}}{z_{2}}\right)}=\frac{\overline{z_{1}}}{\overline{z_{2}}}$
(k). $\operatorname{Im}(z) \leq|z|$
(d). $z-\bar{z}=2 i \operatorname{Im}(z)$
(h). $\left|z_{1} z_{2}\right|=\left|z_{1}\right|\left|z_{2}\right|$
$\underline{\text { Proof (f): Let } z_{1}=x_{1}+i y_{1} \text { and } z_{2}=x_{2}+i y_{2} ~}$

Then $\overline{z_{1} \cdot z_{2}}=\overline{\left(x_{1}+i y_{1}\right) \cdot\left(x_{2}+i y_{2}\right)}=\overline{+i\left(x_{1} y_{2}+x_{2} y_{1}\right)}=x_{1} x_{2}-y_{1} y_{2}-i\left(x_{1} y_{2}+x_{2} y_{1}\right)$

Also, $\overline{z_{1}} \cdot \overline{z_{2}}=\left(x_{1}-i y_{1}\right) \cdot\left(x_{2}-i y_{2}\right)=x_{1} x_{2}-y_{1} y_{2}-i(\quad$ i.e. RHS $=$ LHS

Then $\left|z_{1} z_{2}\right|^{2}=\left(z_{1} z_{2}\right)\left(\overline{z_{1} z_{2}}\right)=\left(z_{1} z_{2}\right)\left(\overline{z_{1}} \overline{z_{2}}\right)=\left(z_{1} \overline{z_{1}}\right)\left(z_{2} \overline{z_{2}}\right)=$ \qquad

Take the square root: $\left|z_{1} z_{2}\right|=\left|z_{1}\right|\left|z_{2}\right|$

Ex: Given $z_{1}=4+2 i$ and $z_{2}=1+3 i$
(a). Sketch z_{1}, z_{2}, and $z_{1}+z_{2}$. Verify your sketch by computing $z_{1}+z_{2}$.
(b). Sketch z_{1}, z_{2}, and $z_{1}-z_{2}$. Verify your sketch by computing $z_{1}-z_{2}$.
(c). Find the distance between z_{1} and z_{2}.

Ex: Describe the set of points that satisfy $|z-1+2 i|=3$.

