Name:
Quiz 2
Math 434 Complex Variables - Crawford
Books, notes (in any form), and calculators are not allowed. Show all your work and simplify your answers. Good Luck!

1. $(7 \mathrm{pts})$ Given $f(z)= \begin{cases}-2 & \text { when } x<0 \\ 3 y & \text { when } x>0\end{cases}$
and C is the contour from $z=-1+i$ to $z=1+i$ along the curve $y=x^{2}$, evaluate the integral $\int_{C} f(z) d z$.
2. (7 pts) Evaluate the integral $\int_{c} \frac{z^{3}}{\bar{z}} d z$ where C is the semicircle $z=2 e^{i \theta}(0 \leq \theta \leq \pi)$
3. (6 pts) If C is a circle of radius 3 centered at the origin with positive orientation, which of the following integrals are guaranteed to equal 0 by the Cauchy-Goursat Theorem?
(a). $\int_{C} \frac{z}{z^{2}-16} d z$
(b). $\int_{C} \frac{z}{e^{z}} d z$
(c). $\int_{C} \frac{1}{z^{2}-4 z+5} d z$
(d). $\int_{C} \log (z-3 i) d z$
