Name:
Math 434 Complex Variables - Crawford
Books, notes (in any form), and calculators are not allowed. Show all your work. Good Luck! 1. $(8 \mathrm{pts})$ Given $z=(-2-2 i)^{3}$.
(a). Find the principal argument $\operatorname{Arg} z$.
(b). Write $z$ (the resulting product) in rectangular form.
2. (2 pts) True or False: If $z_{1}=3 e^{-i \pi / 3}$ and $z_{2}=\frac{1}{2} e^{i 5 \pi / 3}$, then $\arg z_{1}=\arg z_{2}$.
3. ( 8 pts ) Given -27 ,
(a). Find the cube roots $(-27 i)^{1 / 3}$ and write the final answers in rectangular form.
(b). Exhibit the roots as the vertices of a specific regular polygon and indicate the principal root.
4. ( 2 pts ) True or False: The fourth roots of a complex number $z$ can be written as $c, c w_{4}, c w_{4}^{2}, c w_{4}^{3}$ where $1, w_{4}, w_{4}^{2}, w_{4}^{3}$ are the $4^{\text {th }}$ roots of unity and $c$ must be the principal root of $z$.

