1. Express the following in the form $a+i b$. $\tanh ^{-1}(1+2 i)$
2. Solve $\sin z=\sqrt{2}$ using inverse trigonometric functions.
3. Evaluate the following integrals
(a). $\int_{1}^{2} \frac{2 i}{t}-t d t$
(b). $\int_{C} G(x, y) d x$, and $\int_{C} G(x, y) d y$, for $G(x, y)=3 x^{2}+6 y^{2}$ and $C: x=t, y=t^{2}+1$ for $-1 \leq t \leq 0$
(c). $\int_{C} x^{6} y d s$ where $C: x=t, y=\frac{1}{t} 1 \leq t \leq 2$
(d). $\int_{C}\left(x^{2}+i y^{3}\right) d z$ where $C$ is the straight line from $z=1$ to $z=i$.
(e). $\oint_{C} z e^{z} d z$ where $C$ is the square with vertices $z=0, z=1, z=1+i, z=i$.
4. By finding an antiderivative, evaluate the following integrals, where the path is an arbitrary contour between the indicated limits of integration.
(a). $\int_{0}^{3+i} z^{2} d z$
(b). $\int_{1-i}^{1+2 i} z e^{z^{2}} d z$
(c). $\int_{\pi}^{\pi+2 i} \sin \frac{z}{2} d z$
5. Given the following functions, determine for which ones The Cauchy-Goursat Theorem applies so that $\oint_{C} f(z) d z=0$. For those which it does not apply, evaluate the integral $\oint_{C} f(z) d z$.
(a). $f(z)=\frac{z}{2 z+3} ; C$ : the unit circle $|z|=1$
(b). $f(z)=\frac{z}{2 z+3} ; C$ : the circle $|z|=2$
(c). $f(z)=\tan z ; C$ : the unit circle $|z|=1$
6. Given $\oint_{C} \frac{5}{z-1-i} d z$ and $C: x^{4}+y^{4}=16$.
(a). Explain why $\oint_{C} \frac{5}{z-1-i} d z \neq 0$
(b). Over which of the following contours will the integral give you the same answer.
(i). $|z|=2$
(ii). $|z|=1 / 2$
(iii). $|z-1-i|=1$
(iv). square with vertices at $z=0,2,2+2 i, 2 i$
7. Use the Cauchy Integral formula, when appropriate, to evaluate
(a). $\oint_{C} \frac{z^{2}-3 z+4 i}{z+2 i} d z ; C:|z|=3$
(b). $\oint_{C} \frac{z^{2}}{z^{2}+4} d z ; C:(i)|z-i|=2 \quad$ (ii) $|z+2 i|=1$
(c). $\oint_{C} \frac{2 z+5}{z^{2}-2 z} d z ; C:$ (i) $|z|=1 / 2$ (ii) $|z+1|=2$ (iii) $|z-3|=2$ (iv) $|z+2 i|=1$
(d). $\oint_{C} \frac{2 z^{3}+3 z}{(z+2)^{3}} d z ; \quad C:|z-i|=4$
8. Let $C_{R}$ denote the quarter circle in quadrant I of $|z|=R(R>\sqrt{5})$, taken in the counterclockwise direction.
(a). Find an upper bound on $\left|\int_{C_{R}} \frac{3 z^{2}-2}{z^{2}+5 z^{4}} d z\right|$.
(b). Find the limit of the upper bound found in part (a) as $R \rightarrow \infty$.
9. Determine whether the following series converge or diverge. If it converges, find the sum.
(a). $\sum_{n=0}^{\infty}\left(\frac{\pi i}{3}\right)^{n}$
(b). $\sum_{n=0}^{\infty} \frac{3^{n+1}}{(1-2 i)^{n-2}}$
10. Determine for which values of $z$ the following series converges and find (and simplify) the sum.
$\sum_{n=0}^{\infty} \frac{(2 z+6 i)^{n}}{3^{n}}$
11. Rewrite the following function as a geometric series and state where it converges. $\quad f(z)=\frac{3}{3 z-4}$
12. Derive the Taylor Series for $\sinh (z)$ by
(a). Using the definition of Taylor Series.
(b). Using the definition $\sinh z=\frac{e^{z}-e^{z}}{2}$ and the known Maclaurin Series for $e^{z}$.
(c). Using the identity $\sinh z=-i \sin (i z)$ and the known Maclaurin Series for $\sin z$.
13. Use a known Maclaurin Series to find a series expansion for $f(z)=\frac{3 z^{2}}{4 z^{4}+5}$ and state the values of $z$ where it converges. Is the resulting series a Maclaurin Series?
