Name: _

Math 434, Complex Variables - Crawford

	Score	
Books and notes (in any form) are not allowed	1	/10
• Books and notes (in any form) are not anowed.	2	/99
• You may use calculators and the provided formula sheet.	2	/ 22
 Show all your work. Partial credit may be given for written work. Unless otherwise stated 	3	/22
 Otherwise stated, <u>Brief</u> explanations should only require 1-2 sentences. Simplify/Evaluate trigonometric, exponential, logarithmic, and hyperbolic functions for standard values. Do <u>not</u> not simplify answers to the form a + bi (unless needed for the answer). Assume that closed contours are positively oriented. Do not shift indices for series (unless you find it helpful) 	4	/16
	5	/12
	6	/10
Good Luck!	7	/12
	Total	/100

1. (10 pts). Find all values $\tan^{-1}(-3i)$. [Write your final answer in the form a + bi.]

2. (22 pts). For each of the following integrals,

- (i). Determine and *briefly* explain whether each of the integrals is independent of path.
- (*ii*). If it is independent of path, evaluate the integral by finding an antiderivative. If it is not independent of path, then evaluate the integral by parameterization.

[You do NOT need to simplify to the form a + bi.]

(a).
$$\int_C \frac{3}{(z-1)^2} dz$$
 where C is line segment connecting $z=2$ and $z=2i$.

(b).
$$\int_C |z|^2 dz$$
 where C is the curve $x = t^2, y = \frac{1}{t}$ for $1 \le t \le 2$

3. (22 pts). Use the Cauchy Integral Formula(s) to evaluate

(a).
$$\oint_C \frac{3-z^2}{z^2+2iz} dz$$
 where C is the circle $|z+2i| = 1$.

(b).
$$\oint_C \frac{e^{z^2}}{(z-i)^3} dz$$
 where C is the circle $|z| = 3$

4. (16 pts). Determine whether the following statements are GUARANTEED TO ALWAYS BE TRUE and give a *brief* explanation of your answer.

- (a). $\int_{C_1} f(z) dz = \int_{C_2} f(z) dz = 0$ where C_1 is the square with vertices at $z = \pm 10 \pm 10i$ and C_2 is the circle |z (i+1)| = 2, both oriented in the counterclockwise direction. Also f(z) is analytic on C_1 and C_2 and the region in between both curves.
- (b). $\int_C \frac{(5+i)z}{(z-2i)(z+2i)} dz = 0 \text{ where } C \text{ is the circle } |z| = 1.$
- (c). $\int_C \text{Log}(z+2) dz$ where C is the circle |z| = 1.
- (d). $\oint_C \frac{1}{\sin z} dz = \oint_{C_1} \frac{1}{\sin z} dz + \oint_{C_2} + \frac{1}{\sin z} dz + \oint_{C_3} \frac{1}{\sin z} dz$ where C is the rectangle with vertices at $\pm 5 \pm 2i$ and C_1, C_2, C_3 are the circles $|z + \pi| = 1, |z| = 1, |z \pi| = 1$, respectively, all oriented in the counterclockwise direction.

5. (12 pts). Find an upper bound on $\left| \int_C \frac{e^z}{z^4 + 4z^2 + 4} dz \right|$ where C is the circle $z = 3e^{i\theta}$.

6. (10 pts). Determine whether the following series converges or diverges. If it converges, find the sum.

$$\sum_{n=0}^{\infty} \frac{2i^{1-n}}{(2-i)^n}$$

7. (12 pts). Given $f(z) = \frac{3}{8z^2 + z^5}$

- (a). Use a known Maclaurin Series to find a series expansion for f(z) and state the values of z where it converges. [Write your answer so that all terms are within the summation and simplified. But do NOT shift any indices.]
- (b). Is the resulting series a Maclaurin Series? Why or why not?