1. Evaluate the following and write your answer in the form $a+i b$.
(a). $\left(\frac{1}{2}-\frac{1}{4} i\right)\left(\frac{2}{3}+\frac{5}{3} i\right)=\frac{3}{4}+\frac{2}{3} i$
(c). $\frac{(4+5 i)+2 i^{3}}{(2+i)^{2}}=\frac{24}{25}-\frac{7}{25} i$
(b). $\frac{5}{i}+\frac{2}{i^{3}}-\frac{20}{i^{18}}=20-3 i$
(d). $\frac{1}{i-3}=-\frac{3}{10}-\frac{1}{10} i$
2. Solve the following equations for $z=a+i b$.
(a). $2 z=i(2+9 i)$
$z=-\frac{9}{2}+i$
(b). $\frac{z}{1+\bar{z}}=3+4 i$
$z=-\frac{7}{6}-\frac{1}{6} i$
3. Describe or sketch the set of points z in the complex plane that satisfy the following equations.
$\operatorname{Re}\left(z^{2}\right)=|\sqrt{3}-i|$
hyperbola: $x^{2}-y^{2}=2$
4. Find an upper bound on $\frac{1}{\left|z^{4}-5 z^{2}+6\right|}$ if $|z|=2 . \quad \quad\left|z^{4}-5 z^{2}+6\right| \geq\left|\left|z^{4}\right|-\left|5 z^{2}\right|-|6|\right| \Longrightarrow \frac{1}{\left|z^{4}-5 z^{2}+6\right|} \leq \frac{1}{10}$
5. Verify that $\sqrt{2}|z| \geq|\operatorname{Re} z|+|\operatorname{Im} z|$ by reducing it to the inequality $(|x|-|y|)^{2} \geq 0$ and explain why this is true.
6. Write the given complex number in polar form, first using $\theta \neq \operatorname{Arg}(z)$ and then using $\theta=\operatorname{Arg}(z)$.

$$
-2-2 \sqrt{3} i
$$

7. Calculate the following by first converting to polar form. Then write your final answer back in rectangular form $a+i b$.
(a). $\frac{-i}{1+i}$
(b). $(1+\sqrt{3} i)^{9}$
8. Are there any cases in which $\left.\operatorname{Arg}\left(z_{1} z_{2}\right)=\operatorname{Arg} z_{1}+\operatorname{Arg} z_{2}\right)$. Can you prove you assumptions? While this is true for $-\pi<\operatorname{Arg} z_{1}+\operatorname{Arg} z_{2} \leq \pi$, you can prove it specifically if $\operatorname{Re} z_{1}>0$ and $\operatorname{Re} z_{2}>0$.
9. Compute all of the roots, sketch them graphically, and indicate the principal root.

$$
(1+i)^{1 / 5}
$$

10. Sketch the set S.
(a). $\operatorname{Re}\left(z^{2}\right)>0$
(b). $|z-i|>0$
(c). $0 \leq \arg (z) \leq \pi / 6$
(a). Sketch lines $y= \pm x$ and test regions
(b). Entire plane with a hole at i
(c). Wedge of plane between the angles
11. Find the natural domain of the function $\frac{3 z+2 i}{z^{3}+4 z^{2}+z}$
12. Find the real and imaginary parts u and v of f both as functions of x and y (i.e. $f(z)=u(x, y)+i v(x, y))$ and of functions of r and θ (i.e. $f(z)=u(r, \theta)+i v(r, \theta)$).
$f(z)=z+\frac{1}{z}$
$f(z)=\left(x+\frac{x}{x^{2}+y^{2}}\right)+i\left(y-\frac{y}{x^{2}+y^{2}}\right)$ and $f(z)=\left(r+\frac{1}{r}\right) \cos \theta+i\left(r-\frac{1}{r}\right) \sin \theta$
13. Show that $\left|e^{z}\right|=e^{x}$
14. Show that $\lim _{z \rightarrow 0} \frac{\operatorname{Re} z}{\operatorname{Im} z}$ does not exist
15. Verify the following limits. Justify your answers using the the theorem in Section 17.
(a). $\lim _{z \rightarrow \infty} \frac{z^{2}+i z-2}{(1+2 i) z}=\frac{1}{5}-\frac{2}{5} i$
(b). $\lim _{z \rightarrow \infty} \frac{z^{2}-3 i z+1}{i z+2}=\infty$
(c). $\lim _{z \rightarrow i} \frac{z^{2}-1}{z^{2}+1}=\infty$
(a). Theorem, part (2)
(b). Theorem, part (3)
(c). Theorem, part (1)
16. Determine where the following functions are differentiable and then find $f^{\prime}(z)$.
(a). $f(z)=4 x^{2}+5 x-4 y^{2}+9+i(8 x y+5 y-1)$
(b). $\quad f(z)=\frac{x}{x^{2}+y^{2}}+i \frac{y}{x^{2}+y^{2}}$
17. Find $f^{\prime}(z)$
(a). $f(z)=z-\frac{1}{z}$
(b). $f(z)=\left(i z^{3}-7 z^{2}\right)\left(z^{3}-3 z^{2}\right)^{4}$
18. Find real constants, a and b so that the following function is analytic.
$f(z)=3 x-y+5+i(a x+b y-3)$
$a=1, b=3$
19. Express each of the following in the form $a+i b$.
(a). $\sin (-3 i)=-i \sinh 3$
(d). $\cosh \left(1+\frac{\pi}{6} i\right)=\frac{1}{2} \cosh (1) \sqrt{3}+\frac{1}{2} i \sinh (1)$
(b). $\cos (2-4 i)=\cos 2 \cosh 4+i \sin 2 \sinh 4$
(c). $\tan \left(\frac{\pi}{2}-i\right)=i \operatorname{coth}(1)$
(e). $\tanh \pi i=0$
20. Find all values of z that satisfy the given equation. [You may find it helpful to equate real and imaginary parts.]
(a). $\cos z=i \sin z$
(b). $\sin z=i$
(c). $\sinh z=i$
(d). $\cos z=\sinh 3$
21. Prove the following:
(a). $\overline{\cos z}=\cos \bar{z}$
(b). $|\sinh z|^{2}=\sinh ^{2} x+\sin ^{2} y$
(c). $\tanh (z+\pi i)=\tanh z$
22. Find the derivatives
(a). $\sin z \cosh z$
(b). $\tanh (i z-2)$
23. If $|\sin z| \leq 1$, then what can you say about z. Justify your answer.
z must be real, otherwise the magnitude is unbounded because of the $\sinh y$ term.
24. Find $\underline{\text { all }}$ complex values and state the Principle Value of each of the following.
(a). $\log (-2+2 i)$
(d). $(-1-i)^{(3 i)}$
(b). $\log (e i)$
(c). $\log (1+i \sqrt{3})$
(e). $2^{4 i}$
25. page 100: \#1
26. Given $f(z)=\frac{\log (2 z+i)}{z^{2}+4}$.
(a). Determine where the function is analytic.
(b). Find $f^{\prime}(z)$.
27. Verify that $\left(z^{\alpha}\right)^{n}=z^{n \alpha}$ for $z \neq 0$ and n an integer.
