(a).
$$\left(\frac{1}{2} - \frac{1}{4}i\right)\left(\frac{2}{3} + \frac{5}{3}i\right) = \frac{3}{4} + \frac{2}{3}i$$

(b). $\frac{5}{i} + \frac{2}{i^3} - \frac{20}{i^{18}} = 20 - 3i$
(c). $\frac{(4+5i)+2i^3}{(2+i)^2} = \frac{24}{25} - \frac{7}{25}i$
(d). $\frac{1}{i-3} = -\frac{3}{10} - \frac{1}{10}i$

2. Solve the following equations for z = a + ib.

(a). 2z = i(2+9i) $z = -\frac{9}{2}+i$ (b). $\frac{z}{1+\bar{z}} = 3+4i$ $z = -\frac{7}{6}-\frac{1}{6}i$

3. Describe or sketch the set of points z in the complex plane that satisfy the following equations.

Re
$$(z^2) = |\sqrt{3} - i|$$
 hyperbola: $x^2 - y^2 = 2$

4. Find an upper bound on $\frac{1}{|z^4 - 5z^2 + 6|}$ if |z| = 2. $|z^4 - 5z^2 + 6| \ge ||z^4| - |5z^2| - |6|| \Longrightarrow \frac{1}{|z^4 - 5z^2 + 6|} \le \frac{1}{10}$

5. Verify that $\sqrt{2}|z| \ge |\operatorname{Re} z| + |\operatorname{Im} z|$ by reducing it to the inequality $(|x| - |y|)^2 \ge 0$ and explain why this is true.

6. Write the given complex number in polar form, first using $\theta \neq \operatorname{Arg}(z)$ and then using $\theta = \operatorname{Arg}(z)$.

$$-2 - 2\sqrt{3}i$$

7. Calculate the following by first converting to polar form. Then write your final answer back in rectangular form a + ib.

(a). $\frac{-i}{1+i}$ (b). $(1+\sqrt{3}i)^9$

8. Are there any cases in which Arg $(z_1z_2) = \text{Arg } z_1 + \text{Arg } z_2$. Can you prove you assumptions? While this is true for $-\pi < \text{Arg } z_1 + \text{Arg } z_2 \le \pi$, you can prove it specifically if Re $z_1 > 0$ and Re $z_2 > 0$.

9. Compute all of the roots, sketch them graphically, and indicate the principal root.

$$(1+i)^{1/5}$$

10. Sketch the set S.

- (a). Re $(z^2) > 0$ (b). |z i| > 0 (c). $0 \le \arg(z) \le \pi/6$
- (a). Sketch lines $y = \pm x$ and test regions (b). Entire plane with a hole at i (c). Wedge of plane between the angles

11. Find the natural domain of the function $\frac{3z+2i}{z^3+4z^2+z}$

12. Find the real and imaginary parts u and v of f both as functions of x and y (i.e. f(z) = u(x, y) + iv(x, y)) and of functions of r and θ (i.e. $f(z) = u(r, \theta) + iv(r, \theta)$).

$$f(z) = z + \frac{1}{z} \qquad \qquad f(z) = (x + \frac{x}{x^2 + y^2}) + i(y - \frac{y}{x^2 + y^2}) \text{ and } f(z) = \left(r + \frac{1}{r}\right)\cos\theta + i\left(r - \frac{1}{r}\right)\sin\theta$$

13. Show that $|e^z| = e^x$

14. Show that $\lim_{z\to 0} \frac{\operatorname{Re} z}{\operatorname{Im} z}$ does not exist

15. Verify the following limits. Justify your answers using the the theorem in Section 17.

(a).
$$\lim_{z \to \infty} \frac{z^2 + iz - 2}{(1+2i)z} = \frac{1}{5} - \frac{2}{5}i$$
 (b). $\lim_{z \to \infty} \frac{z^2 - 3iz + 1}{iz + 2} = \infty$ (c). $\lim_{z \to i} \frac{z^2 - 1}{z^2 + 1} = \infty$
(a). Theorem, part (2) (b). Theorem, part (3) (c). Theorem, part (1)

16. Determine where the following functions are differentiable and then find f'(z).

(a).
$$f(z) = 4x^2 + 5x - 4y^2 + 9 + i(8xy + 5y - 1)$$
 (b). $f(z) = \frac{x}{x^2 + y^2} + i\frac{y}{x^2 + y^2}$

17. Find f'(z)

(a).
$$f(z) = z - \frac{1}{z}$$
 (b). $f(z) = (iz^3 - 7z^2)(z^3 - 3z^2)^4$

18. Find real constants, a and b so that the following function is analytic. f(z) = 3x - y + 5 + i(ax + by - 3)

- **19.** Express each of the following in the form a + ib.
- (a). $\sin(-3i) = -i \sinh 3$ (d). $\cosh\left(1 + \frac{\pi}{6}i\right) = \frac{1}{2}\cosh\left(1\right)\sqrt{3} + \frac{1}{2}i\sinh\left(1\right)$
- (b). $\cos(2-4i) = \cos 2 \cosh 4 + i \sin 2 \sinh 4$
- (c). $\tan(\frac{\pi}{2} i) = i \coth(1)$ (e). $\tanh \pi i = 0$

20. Find all values of z that satisfy the given equation. [You may find it helpful to equate real and imaginary parts.]

(a).
$$\cos z = i \sin z$$
 (b). $\sin z = i$ (c). $\sinh z = i$ (d). $\cos z = \sinh 3$

a = 1, b = 3

21. Prove the following:

(a).
$$\overline{\cos z} = \cos \overline{z}$$
 (b). $|\sinh z|^2 = \sinh^2 x + \sin^2 y$ (c). $\tanh(z + \pi i) = \tanh z$

22. Find the derivatives

(a).
$$\sin z \cosh z$$
 (b). $\tanh(iz - 2)$

23. If $|\sin z| \le 1$, then what can you say about z. Justify your answer. z must be real, otherwise the magnitude is unbounded because of the sinh y term.

24. Find <u>all</u> complex values and state the Principle Value of each of the following.

- (a). $\log(-2+2i)$ (d). $(-1-i)^{(3i)}$
- (b). $\log(ei)$
- (c). $\log(1+i\sqrt{3})$ (e). 2^{4i}
- **25.** page 100: #1

26. Given $f(z) = \frac{\text{Log } (2z+i)}{z^2+4}$.

- (a). Determine where the function is analytic.
- (b). Find f'(z).
- **27.** Verify that $(z^{\alpha})^n = z^{n\alpha}$ for $z \neq 0$ and n an integer.