Name: _____

Math 434, Complex Variables – Crawford

Exam 1 13 March 2015

	Score	
	1	/30
• Books and notes (in any form) are not allowed.	2	/8
• You may use calculators and the provided formula sheet.	3	/8
• Put all of your work and answers other paper. Include this sheet as a		
cover sheet.	4	/12
• Show all your work. Partial credit may be given for written work.	5	/12
• Unless otherwise stated,	5	/12
- <u>Brief</u> explanations should only require 1-2 sentences.	6	/10
 Simplify/Evaluate trigonometric, exponential, logarithmic, and hyperbolic functions for standard values. 		/10
	7	/12
Good Luck and Happy Pi Day Tomorrow!	8	/12
	Total	/100

1. (30 pts). Evaluate the following. [If it is multiple-valued, find all values.]

(a).
$$\frac{1}{i} - \frac{2-4i}{(3+i)^2}$$
 [Show intermediate steps and write in the form $a + ib$.]

(b). $(-2+2\sqrt{3}i)^{1/4}$ [Compute all roots and write them in the form a+bi, sketch them graphically, and indicate the principal root.]

(c). $(-2 + 2\sqrt{3}i)^{-i}$ [Write your answer in polar form $re^{i\theta}$. Sketch or describe the points in the complex plane.]

2. (8 pts). Describe or sketch the set of points z in the complex plane that satisfy the equation |z + 2i| = Im(z).

3. (8 pts). Use the theorems from class about limits involving infinity to show that

$$\lim_{z \to \infty} \frac{2iz^2 + 3}{(i+1)z} = \infty$$
 [Show all steps for the theorem used.]

4. (12 pts). Use the limit definition of the derivative $f'(z) = \lim_{\Delta z \to 0} \frac{f(z + \Delta z) - f(z)}{\Delta z}$ to show that $f(z) = \operatorname{Re}(z) = x$ is <u>not</u> differentiable anywhere.

5. (12 pts). Given $f(z) = \sqrt{r}e^{i\theta/2}$ $(r > 0, -\pi < \theta < \pi)$,

- (a). Use the Cauchy-Riemann equations to show that f(z) is differentiable.
- (b). Find f'(z). [You do not need to simplify.]

6. (10 pts). Determine where the following function is not analytic and sketch the resulting branch cut.

f(z) = Log(iz - 3)

7. (12 pts). Given the branch
$$\log z = \ln r + i\theta$$
 $\left(r > 0, -\frac{\pi}{2} < \theta < \frac{3\pi}{2}\right)$, determine whether
 $\log(1+i)^3 = 3\log(1+i)$. [Show all your work to justify your answer.]

8. (12 pts). Find all values of z that satisfy the given equation. $\cos z = 3i$ [You may leave inverse trig and/or inverse hyperbolic functions in your answer(s).]