Name:
Exam 1
Math 434, Complex Variables - Crawford

- Books and notes (in any form) are not allowed.
- You may use calculators and the provided formula sheet.
- Put all of your work and answers other paper. Include this sheet as a cover sheet.
- Show all your work. Partial credit may be given for written work.
- Unless otherwise stated,
- Brief explanations should only require 1-2 sentences.
- Simplify/Evaluate trigonometric, exponential, logarithmic, and hyperbolic functions for standard values.

Good Luck and Happy Pi Day Tomorrow!
Score

1	$/ 30$
2	$/ 8$
3	$/ 8$
4	$/ 12$
5	$/ 12$
6	$/ 12$
7	$/ 100$
8	$/ 12$
Total	

1. (30 pts). Evaluate the following. [If it is multiple-valued, find all values.]
(a). $\frac{1}{i}-\frac{2-4 i}{(3+i)^{2}}$ [Show intermediate steps and write in the form $a+i b$.]
(b). $(-2+2 \sqrt{3} i)^{1 / 4}$ [Compute all roots and write them in the form $a+b i$, sketch them graphically, and indicate the principal root.]
(c). $(-2+2 \sqrt{3} i)^{-i} \quad$ [Write your answer in polar form $r e^{i \theta}$. Sketch or describe the points in the complex plane.]
2. (8 pts). Describe or sketch the set of points z in the complex plane that satisfy the equation $|z+2 i|=\operatorname{Im}(z)$.
3. (8 pts). Use the theorems from class about limits involving infinity to show that
$\lim _{z \rightarrow \infty} \frac{2 i z^{2}+3}{(i+1) z}=\infty$
[Show all steps for the theorem used.]
4. (12 pts). Use the limit definition of the derivative $f^{\prime}(z)=\lim _{\Delta z \rightarrow 0} \frac{f(z+\Delta z)-f(z)}{\Delta z}$ to show that
$f(z)=\operatorname{Re}(z)=x \quad$ is not differentiable anywhere.
5. (12 pts). Given $f(z)=\sqrt{r} e^{i \theta / 2} \quad(r>0,-\pi<\theta<\pi)$,
(a). Use the Cauchy-Riemann equations to show that $f(z)$ is differentiable.
(b). Find $f^{\prime}(z)$. [You do not need to simplify.]
6. (10 pts). Determine where the following function is not analytic and sketch the resulting branch cut.
$f(z)=\log (i z-3)$
7. (12 pts). Given the branch $\log z=\ln r+i \theta \quad\left(r>0,-\frac{\pi}{2}<\theta<\frac{3 \pi}{2}\right)$, determine whether
$\log (1+i)^{3}=3 \log (1+i)$.
[Show all your work to justify your answer.]
8. (12 pts). Find all values of z that satisfy the given equation.
$\cos z=3 i$
[You may leave inverse trig and/or inverse hyperbolic functions in your answer(s).]
