<u>THEOREM</u> If X_1, X_2, \ldots, X_n are *n* mutually independent ______ random variables with means $\mu_1, \mu_2, \ldots, \mu_n$ and variances $\sigma_1^2, \sigma_2^2, \ldots, \sigma_n^2$,

then $Y = \sum c_i X_i = c_1 X_1 + c_2 X_2 + \ldots + c_n X_n$ has the normal distribution

where $\mu_y = \sum c_i \mu_i$ and $\sigma_y^2 = \sum c_i^2 \sigma_i^2$.

<u>COROLLARY</u> Let X_1, X_2, \ldots, X_n be a random sample of size *n* from a normal distribution $N(\mu, \sigma^2)$.

Then the sample mean $\overline{X} = \frac{1}{n} \sum X_i = \frac{X_1 + X_2 + \ldots + X_n}{n}$ has the normal distribution ______.

So \overline{X} has the same mean, but a smaller variance. Hence, the probability that \overline{X} falls in a given interval containing μ is greater than the probability that a single observation of X falls in the same interval.

<u>Ex</u> Let X_1, X_2, \ldots, X_{10} be a random sample from test scores distributed as $N(76.4, 4.1^2)$.

(a). Find $P(70 < X_1 < 80)$.

(b). Find $P(70 < \overline{X} < 80)$.

Let
$$W = \frac{\sqrt{n}}{\sigma} (\overline{X} - \mu) = \frac{\overline{X} - \mu}{\sigma/\sqrt{n}}$$
 where X comes from _____ distribution.

Then
$$\mu_W = E(W) = E\left(\frac{\overline{X} - \mu}{\sigma/\sqrt{n}}\right) =$$

and

$$\sigma_W^2 = \operatorname{Var}(W) = E(W^2) - (E(W))^2 = E(W^2) - 0^2$$

So W has mean _____ and variance _____ regardless of _____

But how is W itself distributed?

<u>CENTRAL LIMIT THEOREM</u> If \overline{X} is the mean of a random sample X_1, X_2, \ldots, X_n of size *n* from a distribution with finite mean μ and finite variance σ^2 , then the distribution of

 $W = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}}$ is

Comments

- <u>Ex</u> Let X_1, X_2, \ldots, X_{30} be a random sample from an unknown distribution with mean 28.5 and variance 9.8.
- (a). Find $P(28 < \overline{X} < 30)$

(b). Let $Y = X_1 + X_2 + \ldots + X_{30}$. Find P(800 < Y < 900)

- <u>Ex</u> Let X_1, X_2, \ldots, X_{25} be a random sample from a $\chi^2(2)$. Let $Y = X_1 + X_2 + \ldots + X_{25}$.
- (a). Find P(45 < Y < 55) using the distribution of Y.

(b). Find P(45 < Y < 55) using the Central Limit Theorem.