Given $f(x)=\frac{x+y}{8}, \quad$ for $1 \leq x+y \leq 2$ and x, y nonnegative integers,

(a). Sketch the support of X and Y and probabilities on the graph above.
(b). Add the marginal p.m.f.'s $f_{1}(x)$ and $f_{2}(y)$ to the graph.
(c). Find μ_{X} and μ_{Y} and sketch the point $\left(\mu_{X}, \mu_{Y}\right)$ on the graph above.
$\mu_{X}=E[X]=\sum_{x} x \cdot f_{1}(x)=0 \cdot \frac{3}{8}+1 \cdot \frac{3}{8}+2 \cdot \frac{1}{4}=\frac{7}{8}$
$\mu_{Y}=E[Y]=\sum_{y} y \cdot f_{2}(y)=0 \cdot \frac{3}{8}+1 \cdot \frac{3}{8}+2 \cdot \frac{1}{4}=\frac{7}{8}$
(d). Find the $\operatorname{Cov}(X, Y)$.

$$
\begin{aligned}
& E[X Y]=\sum_{(x, y) \in S} \sum_{S y} x y(x, y)=1 \cdot 0 \cdot \frac{1}{8}+2 \cdot 0 \cdot \frac{1}{4}+0 \cdot 1 \cdot \frac{1}{8}+1 \cdot 1 \cdot \frac{1}{4}+0 \cdot 2 \cdot \frac{1}{4}=\frac{1}{4} \\
& \sigma_{X Y}^{2}=\operatorname{Cov}(X, Y)=
\end{aligned}
$$

(e). Find the correlation coefficient ρ.

$$
\begin{aligned}
& E\left[X^{2}\right]=\sum_{x} x^{2} \cdot f_{1}(x)=0^{2} \cdot \frac{3}{8}+1^{2} \cdot \frac{3}{8}+2^{2} \cdot \frac{1}{4}=\frac{11}{8} \\
& E\left[Y^{2}\right]=\sum_{y} y^{2} \cdot f_{2}(y)=0^{2} \cdot \frac{3}{8}+1^{2} \cdot \frac{3}{8}+2^{2} \cdot \frac{1}{4}=\frac{11}{8} \\
& \sigma_{X}^{2}=E\left[X^{2}\right]-(E[X])^{2}=\frac{11}{8}-\left(\frac{7}{8}\right)^{2}=\frac{11}{8}-\frac{49}{64}=\frac{88-49}{64}=\frac{39}{64} \\
& \sigma_{Y}^{2}=E\left[Y^{2}\right]-(E[Y])^{2}=\frac{11}{8}-\left(\frac{7}{8}\right)^{2}=\frac{11}{8}-\frac{49}{64}=\frac{88-49}{64}=\frac{39}{64} \\
& \rho=
\end{aligned}
$$

(a). Draw a line through $\left(\mu_{X}, \mu_{Y}\right)$ with any slope b that seems to reasonable with the data.
(b). Write down the equation for this line.
(c). Write an expression for the vertical distance D between a point $\left(x_{0}, y_{0}\right)$ in the support and the vertical line.
(d). Find the expected value (or weighted mean) of D^{2}.
(e). Find the slope b that minimizes this expected value (mean of squared distance).

$$
\begin{aligned}
K(b) & =E\left[\left(\left(Y-\mu_{Y}\right)-b\left(X-\mu_{X}\right)\right)^{2}\right] \\
& =E\left[\left(Y-\mu_{Y}\right)^{2}-2 b\left(X-\mu_{x}\right)\left(Y-\mu_{Y}\right)+b^{2}\left(X-\mu_{x}\right)^{2}\right] \\
& =
\end{aligned}
$$

Find the Least-Squares Line for the example from page 1. Sketch it on the graph.

At the optimal b value:
$E\left[\right.$ squared distance $\left.D^{2}\right]=K(b)=K\left(\rho \frac{\sigma_{Y}}{\sigma_{X}}\right)=$ work $=$

