1. (Preliminary Work)

DEF The Gamma Function is defined as $\Gamma(t)=\int_{0}^{\infty} y^{t-1} e^{-y} d y \quad$ for $t>0$.
(a). Use integration by parts once to rewrite the Gamma Function. [Remember you are integrating with respect to y.]

$$
\begin{aligned}
& u=y^{t-1} \\
& d v=e^{-y} d y \\
& d u=\square d y \\
& v= \\
& \begin{aligned}
\Gamma(t) & =\int_{0}^{\infty} y^{t-1} e^{-y} d y=\left.\right|_{0} ^{\infty}+\int_{0}^{\infty}(t-1) y^{t-2} e^{-y} d y \\
& =\lim _{y \rightarrow \infty}\left(-y^{t-1} e^{-y}\right)+\quad+(t-1) \int_{0}^{\infty}
\end{aligned}
\end{aligned}
$$

\qquad

The limit goes to \qquad since
exponentials decay much faster than any power grows.
$=0+0+(t-1) \int_{0}^{\infty} y^{t-2} e^{-y} d y$
$=(t-1) \underbrace{\int_{0}^{\infty} y^{t-2} e^{-y} d y}_{\Gamma(}$
$=(t-1) \Gamma(t-1)$
i.e. $\Gamma(t)=(t-1) \Gamma(t-1)$
(b). Use the formula from part (a) to find and simplify $\Gamma(5) \quad$ (i.e. $t=5$).
$\Gamma(5)=4 \Gamma(4)=4(3 \Gamma(3))=4 \cdot 3($ \qquad $)=4 \cdot 3 \cdot 2($ \qquad $)=4 \cdot 3 \cdot 2 \cdot 1 \cdot \Gamma(1)=$ \qquad $\cdot \Gamma(1)$
(c). Use the result of part(b) to guess the formula for $t=n$ a positive integer: $\Gamma(n)=$ \qquad
(d). Evaluate the integral to determine $\Gamma(1)$.
$\Gamma(1)=\int_{0}^{\infty} y^{0} e^{-y} d y=\int_{0}^{\infty} e^{-y} d y=$
(e). Combine the results of parts (c) and (d):

$$
\Gamma(n)=
$$

We'll use this formula later.

Poisson Distribution with mean λ (i.e. λ occurrences per unit interval):

$$
f(x)=\frac{\lambda^{x} e^{-\lambda}}{x!}, \quad x=0,1, \ldots
$$

\Longrightarrow
Exponential Distribution with parameter $\theta=\frac{1}{\lambda}$ (i.e. mean time until the $1^{s t}$ occurrence): $\quad f(x)=\frac{1}{\theta} e^{-x / \theta}, x \geq 0$

Suppose we now want to consider the random variable X that represents the waiting time until the $\alpha^{\text {th }}$ occurrence.
2. Derive the c.d.f for X.

$$
\begin{aligned}
& F(x)=P(X \leq x) \\
& =1-P(X>x) \\
& \text { i.e. The } \\
& \text { occurrence happens after time } \\
& =1-P(\text { less than } \\
& \text { occurrences in the interval } \\
& \text {) } \\
& =1-P(Y<\alpha) \quad \text { where } Y \text { is the number of occurrences in the interval }[0, x] \text {. } \\
& \text { So } Y \text { is } \\
& \text { with parameter } \\
& \text {. } \\
& =1-[P(Y=0)+P(Y=1)+P(Y=2)+\ldots+P(Y= \\
& \text {)] } \\
& =1-\sum_{k=0}^{\alpha-1} \frac{(\lambda x)^{k} e^{-\lambda x}}{k!} \\
& \text { i.e. } F(x)=1-\sum_{k=0}^{\alpha-1} \frac{(\lambda x)^{k} e^{-\lambda x}}{k!}
\end{aligned}
$$

\qquad .
3. Use the c.d.f $F(x)=1-\sum_{k=0}^{\alpha-1} \frac{(\lambda x)^{k} e^{-\lambda x}}{k!}$ to derive the p.d.f for X.

Recall $f(x)=F^{\prime}(x)$

Then since $F(x)=1-e^{-\lambda x}-e^{-\lambda x} \sum_{k=1}^{\alpha-1} \frac{(\lambda x)^{k}}{k!}$
Separated out the \qquad term and factored out $e^{-\lambda x}$ from the sum since it does not depend on \qquad .

$$
\begin{aligned}
& f(x)=F^{\prime}(x)=0-e^{-\lambda x} \cdot(\square)-\left(\square \sum_{k=1}^{\alpha-1} \frac{k(\lambda x)^{k-1} \cdot \lambda}{k!}+\sum_{k=1}^{\alpha-1} \frac{(\lambda x)^{k}}{k!} \cdot e^{-\lambda x} \cdot(-\lambda)\right) \\
& =\lambda e^{-\lambda x}-\left(\lambda e^{-\lambda x} \sum_{k=1}^{\alpha-1} \frac{k(\lambda x)^{k-1}}{k!}-\lambda e^{-\lambda x} \sum_{k=1}^{\alpha-1} \frac{(\lambda x)^{k}}{k!}\right) \\
& =\lambda e^{-\lambda x}-\lambda e^{-\lambda x} \sum_{k=1}^{\alpha-1}\left[\frac{k(\lambda x)^{k-1}}{k!}-\quad\right] \quad \text { but } \frac{k}{k!}=\frac{k}{r k}=\frac{1}{} \\
& =\lambda e^{-\lambda x}-\lambda e^{-\lambda x} \sum_{k=1}^{\alpha-1}\left[\frac{(\lambda x)^{k-1}}{(k-1)!}-\frac{(\lambda x)^{k}}{k!}\right] \\
& =\lambda e^{-\lambda x}-\lambda e^{-\lambda x}\left[\left(\frac{(\lambda x)^{0}}{0!}-\frac{(\lambda x)^{1}}{1!}\right)+(\quad)+\cdots\right. \\
& \left.\cdots+\left(\frac{(\lambda x)^{\alpha-2}}{(\alpha-2)!}-\frac{(\lambda x)^{\alpha-1}}{(\alpha-1)!}\right)\right] \\
& =\lambda e^{-\lambda x}-\lambda e^{-\lambda x}[1-\quad \quad \text { Cancel out terms above. } \\
& =\lambda e^{-\lambda x}-\longrightarrow+\lambda e^{-\lambda x} \frac{(\lambda x)^{\alpha-1}}{(\alpha-1)!} \\
& =
\end{aligned}
$$

i.e. The p.d.f. of X is given by $f(x)=\lambda e^{-\lambda x} \frac{(\lambda x)^{\alpha-1}}{(\alpha-1)!}$.
4. Let $\lambda=\frac{1}{\theta}$ and also use the formula at the bottom of page 1 for the Gamma Function rewrite the p.d.f $f(x)$.

$$
\begin{aligned}
f(x) & =\frac{\lambda e^{-\lambda x}(\lambda x)^{\alpha-1}}{(\alpha-1)!} \\
& =\frac{\frac{1}{\theta} e^{-x / \theta}\left(\frac{1}{\theta} x\right)^{\alpha-1}}{}
\end{aligned}
$$

$$
=\frac{\frac{1}{\theta} e^{-x / \theta}()^{\alpha-1} x^{\alpha-1}}{\Gamma(\alpha)}
$$

$$
\text { But } \frac{1}{\theta} \cdot\left(\frac{1}{\theta}\right)^{\alpha-1}=
$$

$$
=\frac{e^{-x / \theta}\left(\frac{1}{\theta}\right)^{\alpha} x^{\alpha-1}}{\Gamma(\alpha)}
$$

i.e.
$f(x)=\frac{1}{\Gamma(\alpha) \theta^{\alpha}} x^{\alpha-1} e^{-x / \theta}, \quad 0 \leq x<\infty \quad$ Gamma Distribution with parameters α and $\theta=\frac{1}{\lambda}$
gives the waiting time until the $\alpha^{\text {th }}$ occurrence in a Poisson Process.

Note:

- Derived for α an integer, but also has applications for non-integer α.
- α is the shape parameter
- θ is the scale parameter
[Dr. Crawford will show typical sketches of $f(x)$.]

For the Gamma Distribution,
$\mu=\alpha \theta$

$$
\sigma^{2}=\alpha \theta^{2}
$$

$M(t)=\frac{1}{(1-\theta t)^{\alpha}}, \quad t<\frac{1}{\theta}$

Ex The number of times that a network computer fails has a Poisson distribution with a mean of once per month (30 days).
(a). Find the probability that it will be at least 3 months until the $2^{\text {nd }}$ failure. (Use months)
(b). What if you used days (30 days $=1$ month)
(c). Find μ and σ^{2}

Homework: Section 3.2, p. 109: \#7, 9, 10, 12, 13, 16, 17[Hint: Two-parter with binomial distribution], 19[Set up the integrals for E (Profit) and explain how you would solve it - but do not actually solve it.]

