Ex A class has 18 students, 10 of whom are female and 8 are male. A group of 4 students is randomly selected. Let $X$ be the number of females in the group. Find the pmf of $X$.
$P(X=0)=$
$P(X=1)=$
$P(X=2)=$
$P(X=3)=$
$P(X=4)=$

Collection of $N=$ $\qquad$ objects
$\qquad$ of type 1 and $\qquad$ of type 2

Select $\qquad$ objects at random $\qquad$

Find the probability that exactly $x$ of $n$ objects are of type 1 .
$f(x)=$
$\mu=$
$\sigma^{2}=$

Ex Same example.
(a). Find the mean and variance.
(b). Find the probability that at least 1 female is in the group of 4 .
(c). Find the probabiilty that at most 2 females are in the group of 4 .

Ex Suppose $X$ is the number of Bernoulli trials until the $r^{t h}$ success is observed.
Let $x=$ the trial number where the $r^{t h}$ success occurred.
Then the $\qquad$ trials must have exactly $\qquad$ successes: $\quad S S S \ldots S F F F \ldots F$
$\Longrightarrow \quad$ ways to get $r-1$ successes in $x-1$ trials. Each of which has the probability $\qquad$

So the first $x-1$ trials have a probability given by
Then the last $\left(x^{t h}\right)$ trial must be a success with probability $\qquad$ .
So the pmf for $X$ is $g(x)=\binom{x-1}{r-1} p^{r-1} q^{x-r}$.
where $x$ is the number of trials until the $r^{t h}$ success is observed.

Given without proof (yet): $\mu=\frac{r}{p}$ and $\sigma^{2}=\frac{r q}{p^{2}}=\frac{r(1-p)}{p^{2}}$

Ex A company takes out an insurance policy to cover accidents that occur at its manufacturing plant. The probability that one or more accidents occur in a given month is $\frac{7}{10}$. Consider accidents occurring each month independent from each other. Find the following probabilities.
(a). First accident occurs in the 4th month.
(b). The 12 th month is the 3 rd month with accidents that year.

Part(a) is a special case when $r=1$ :
Let $X$ be the number of trials until the $1^{\text {st }}$ success.
Then $g(x)=\binom{x-1}{0} p^{1} q^{x-1}=p q^{x-1}$

Then $\mu=\frac{1}{p}$ and $\sigma^{2}=\frac{q}{p^{2}}=\frac{(1-p)}{p^{2}}$

Note: $\mu=\frac{1}{p}$ is intuitive:
If the probability of success is $p=\frac{1}{10}$, then we expect, on average, $10=\frac{1}{1 / 10}$ trials before the $1^{\text {st }}$ success.

For the Geometric Distribution, find $P(X>k)$ for integer $k$.

$$
\begin{aligned}
P(X>k) & = \\
& =p q^{(k+1)-1}+p q^{(k+2)-1}+\cdots= \\
& =p q^{-1} \cdot \quad p q^{-1} q^{x}= \\
& =p \cdot \frac{q^{k}}{} \quad=p \cdot \frac{q^{k}}{1-q} \\
& =q^{k}=(1-p)^{k}
\end{aligned}
$$

i.e.
and

Ex Consider the previous example and find the following probabilities.
(a). More than 3 months go by without an accident.
(b). At most 3 months go by before the first accident.

