Statistics:

DEF A random experiment

Def The Sample Space

Ex: Flipping a coin.
(a). A fair coin is flipped 4 times. If x denotes the number of heads flipped, then
$S=$
(b). A fair coin is flipped. If x denotes the number of flips until a Head is observed, then
$S=$

Set Theory Review

The \qquad is the set of all objects considered.

The objects in a set are called \qquad of that set.

If all the elements in a set A are also in S then

A set containing no elements is called the \qquad and denoted \qquad .

The \qquad of a set A is the set of all elements in S that are not in A. It is denoted by \qquad .

The \qquad of two sets A and B is the set that contains elements that are in both A and B.

It is denoted by \qquad .

The \qquad of A and B is the set that contains elements that are in either A or B.

It is denoted by \qquad .

Notation:

$$
\bigcap_{k=1}^{n} A_{k}=A_{1} \cap A_{2} \cap \cdots \cap A_{n}
$$

$$
\bigcup_{k=1}^{n} A_{k}=A_{1} \cup A_{2} \cup \cdots \cup A_{n}
$$

Commutative Laws:

$$
\begin{aligned}
& A \cup B=B \cup A \\
& A \cap B=B \cap A
\end{aligned}
$$

Associative Laws: $\quad(A \cup B) \cup C=A \cup(B \cup C)$

$$
(A \cap B) \cap C=A \cap(B \cap C)
$$

Distributive Laws: $\quad A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$ $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$

De Morgan's Laws:

$$
\begin{aligned}
& (A \cup B)^{\prime}=A^{\prime} \cap B^{\prime} \\
& (A \cap B)^{\prime}=A^{\prime} \cup B^{\prime}
\end{aligned}
$$

What does set theory have to do with random experiments?

The universal set
is the set of \Longleftrightarrow
all objects considered
$\left.\begin{array}{cc}\text { If } A \subset S & \Longleftrightarrow \quad \begin{array}{c}A \text { is called an } \\ \text { (part of the possible outcomes) }\end{array} \\ x \in A & \Longleftrightarrow\end{array} \begin{array}{c}\text { If the outcome } x \\ \text { of a random experiment } \\ \text { is in } A,\end{array}\right]$
\qquad .

Ex: Roll a single 6-sided die.
(a). What is the sample space S ?
(b). Event A : Roll an even number. Write A as a set.
(c). If you roll at 2 , then \qquad .

Some more set \Longleftrightarrow event connections/terminology:

DEF $A_{1}, A_{2}, \ldots, A_{k}$ are mutually exclusive events if
i.e. $A_{1}, A_{2}, \ldots, A_{k}$ are sets.

DEF $A_{1}, A_{2}, \ldots, A_{k}$ are exhaustive events if

But how does any of this help us with probabilities?
How do we define the probability of event A ? (i.e., the chance of event A occurring?)

Suppose a random experiment is repeated n times (called n \qquad).

Def The Frequency of a specific outcome A is

Def The Relative Frequency of a specific outcome A is

Def The Probability of the specific outcome A is

Then if $P(A)$ denotes the probability of event A occurring, \qquad

DeF Probability is a function denoted $P(A)$ with the following properties.
(c). If $A_{1}, A_{2}, A_{3}, \ldots$ are \qquad , then
$P\left(A_{1} \cup A_{2} \cup \cdots \cup A_{k}\right)=P\left(A_{1}\right)+P\left(A_{2}\right)+\cdots+P\left(A_{k}\right)$
for each positive integer k, and $P\left(A_{1} \cup A_{2} \cup \cdots A_{3} \cup \cdots\right)=P\left(A_{1}\right)+P\left(A_{2}\right)+P\left(A_{3}\right)+\cdots \quad$ for an infinitely countable number of events.

