Statistics:

 $\underline{\text{D}}_{\text{EF}}$ A random experiment

 $\underline{\text{D}\text{EF}}$ The Sample Space

 \underline{Ex} : Flipping a coin.

(a). A fair coin is flipped 4 times. If x denotes the number of heads flipped, then

S =

(b). A fair coin is flipped. If x denotes the number of flips until a Head is observed, then

S =

Set Theory Review

The _____ is the set of all objects considered.

The objects in a set are called ______ of that set.

If all the elements in a set A are also in S then

A set containing no elements is called the and denoted ______.

The of a set A is the set of all elements in S that are not in A. It is denoted by _____

The ______ of two sets A and B is the set that contains elements that are in both A and B.

It is denoted by _____.

The ______ of A and B is the set that contains elements that are in either A or B.

It is denoted by _____.

Notation:

$$\bigcap_{k=1}^{n} A_{k} = A_{1} \cap A_{2} \cap \dots \cap A_{n} \qquad \qquad \bigcup_{k=1}^{n} A_{k} = A_{1} \cup A_{2} \cup \dots \cup A_{n}$$

Commutative Laws:	$A \cup B$ $A \cap B$	=	$B \cup A \\ B \cap A$
Associative Laws:	$(A \cup B) \cup C$ $(A \cap B) \cap C$	=	$A \cup (B \cup C)$ $A \cap (B \cap C)$
Distributive Laws:	$A \cap (B \cup C)$ $A \cup (B \cap C)$	=	$(A \cap B) \cup (A \cap C)$ $(A \cup B) \cap (A \cup C)$
De Morgan's Laws:	$\begin{array}{c} (A \cup B)' \\ (A \cap B)' \end{array}$	=	$\begin{array}{l} A' \cap B' \\ A' \cup B' \end{array}$

What does set theory have to do with random experiments?

The universal set		The
is the set of	\iff	is the set of
all objects considered		all possible outcomes
If $A \subset S$	\Leftrightarrow	A is called an (part of the possible outcomes)
$x \in A$	\Leftrightarrow	If the outcome x of a random experiment is in A ,
		then

 $\underline{\mathbf{Ex}}$: Roll a single 6-sided die.

(a). What is the sample space S?

(b). Event A: Roll an even number. Write A as a set.

(c). If you roll at 2, then ______.

Some more set \iff event connections/terminology:

<u>DEF</u> A_1, A_2, \ldots, A_k are mutually exclusive <u>events</u> if

i.e. A_1, A_2, \ldots, A_k are <u>sets</u>.

<u>**DEF**</u> A_1, A_2, \ldots, A_k are exhaustive <u>**events**</u> if

But how does any of this help us with probabilities? How do we define the probability of event A? (i.e., the chance of event A occurring?)

Suppose a random experiment is repeated n times (called n ______).

<u>**DEF</u>** The Frequency of a specific outcome A is</u>

<u>DEF</u> The Relative Frequency of a specific outcome A is

 $\underline{\mathrm{Def}}$ The Probability of the specific outcome A is

Then if P(A) denotes the probability of event A occurring,

<u>DEF</u> Probability is a <u>function</u> denoted P(A) with the following properties.

(c). If $A_1, A_2, A_3, ...$ are ______, then

$$P(A_1 \cup A_2 \cup \cdots \cup A_k) = P(A_1) + P(A_2) + \cdots + P(A_k)$$
 for each positive integer k, and

 $P(A_1 \cup A_2 \cup \cdots A_3 \cup \cdots) = P(A_1) + P(A_2) + P(A_3) + \cdots$ for an infinitely countable number of events.

,