1. CONSTANT RULE: If $f(x)=c$, then $f^{\prime}(x)=0$. [Show $f^{\prime}(a)=0$ for arbitrary a.]

$$
\frac{d}{d x}[c]=0
$$

Proof:

2. If $f(x)=x$, then $f^{\prime}(x)=1$. [Show $f^{\prime}(a)=1$ for arbitrary a.]

$$
\frac{d}{d x}[x]=1
$$

Proof:
3. POWER RULE: If $f(x)=x^{n}$ for any positive integer n, then $f^{\prime}(x)=n x^{n-1}$. [Show $f^{\prime}(a)=n a^{n-1}$ for arbitrary a.]

$$
\frac{d}{d x}\left[n x^{n-1}\right]
$$

Proof:

$$
\begin{aligned}
f^{\prime}(a) & =\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}=\lim _{x \rightarrow a} \quad \text { Factor the numerator: } \\
& =\lim _{x \rightarrow a} \frac{(x-a)\left(x^{n-1}+a x^{n-2}+a^{2} x^{n-3}+\cdots+a^{n-2} x+a^{n-1}\right)}{x-a} \quad \text { You may want to multiply numerator } \\
& =\lim _{x \rightarrow a} \longrightarrow \text { to see that it really is } x^{n}-a^{n} \\
& =a^{n-1}+a \cdot a^{n-2}+a^{2} \cdot a^{n-3}+\cdots+a^{n-2} \cdot a+a^{n-1} \\
& =a^{n-1}+a^{n-1}+a^{n-1}+\cdots+a^{n-1}+a^{n-1} \\
& =
\end{aligned}
$$

Let $a \rightarrow x$ and therefore, $f^{\prime}(x)=n x^{n-1}$
4. Constant Multiple Rule: If f is differentiable at a point a, then $c f$ is differentiable at a and
$(c f)^{\prime}(a)=c f^{\prime}(a)$

$$
\frac{d}{d x}[c f]=c \cdot \frac{d}{d x}[f]
$$

Proof: Let f be differentiable at a.

$$
\begin{aligned}
(c f)^{\prime}(a) & =\lim _{x \rightarrow a} \frac{(c f)(x)-(c f)(a)}{x-a} \\
& =\lim _{x \rightarrow a} \overline{l_{x \rightarrow a}} \\
& =\lim _{x \rightarrow a} c \cdot \frac{f(x)-f(a)}{x-a} \\
& = \\
& =c \cdot f^{\prime}(a) \text { by definition of derivative. }
\end{aligned}
$$

5. Sum Rule: If f and g are differentiable at a point a, then $f+g$ is differentiable at a and
$(f+g)^{\prime}(a)=f^{\prime}(a)+g^{\prime}(a)$

$$
\frac{d}{d x}[f+g]=\frac{d}{d x}[f]+\frac{d}{d x}[g]
$$

Proof: Let f and g be differentiable at a.
$(f+g)^{\prime}(a)=$
6. Quotient Rule: If f and g are differentiable at a point a, then $\frac{f}{g}$ is differentiable at a (for $g(a) \neq 0$) and

$$
\left(\frac{f}{g}\right)^{\prime}(a)=\frac{g(a) f^{\prime}(a)-f(a) g^{\prime}(a)}{(g(a))^{2}} \quad \frac{d}{d x}\left[\frac{f}{g}\right]=\frac{g f^{\prime}-f g^{\prime}}{g^{2}}
$$

Proof: Let f and g be differentiable at a and $g(a) \neq 0$.
Then g is continuous at a and \exists and open interval containing a such that $g(x) \neq 0$.

$$
\begin{aligned}
& \frac{(f / g)(x)-(f / g)(a)}{x-a}=\frac{\frac{f(x)}{g(x)}-\frac{f(a)}{g(a)}}{x-a}=\frac{\left[\frac{g(a) f(x)-f(a) g(x)}{g(x) g(a)}\right]}{(x-a)} \\
&=\left[\frac{g(a) f(x)-f(a) g(x)}{g(x) g(a)(x-a)}\right]=\left[\frac{g(a) f(x)-f(a) g(x)}{(x-a)}\right] \cdot \\
&=\left[\frac{g(a) f(x)-g(a) f(a)+\underline{(x-a)}]}{(x-a)}\right] \cdot \frac{1}{g(x) g(a)} \\
&=\left[\frac{g(a)\left(\frac{1}{}\right)}{}\right. \\
&=\left[g(a) \cdot \frac{f(x)-f(a)}{x-a}-f(a) \cdot(g(x)-g(a))\right. \\
& \hline
\end{aligned}
$$

Then

$$
\begin{aligned}
& \begin{aligned}
& \lim _{x \rightarrow a} \frac{(f / g)(x)-(f / g)(a)}{x-a}=\lim _{x \rightarrow a}\left[g(a) \cdot \frac{f(x)-f(a)}{x-a}-f(a) \cdot \frac{g(x)-g(a)}{x-a}\right] \cdot \frac{1}{g(x) g(a)} \\
&=\left[\lim _{x \rightarrow a} g(a) \cdot \square\right. \\
&=\left[g(a) \cdot f^{\prime}(a)-\square \lim _{x \rightarrow a} f(a) \cdot \lim _{x \rightarrow a} \frac{g(x)-g(a)}{x-a}\right] \cdot \lim _{x \rightarrow a} \frac{1}{g(x) g(a)} \\
& \text { i.e } \\
&=\frac{g(a) \cdot f^{\prime}(a)-f(a) \cdot g^{\prime}(a)}{(g(a))^{2}} \text { by definition of derivative. }
\end{aligned}
\end{aligned}
$$

7. Product Rule: If f and g are differentiable at a point a, then $f g$ is differentiable at a and $(f g)^{\prime}(a)=f(a) g^{\prime}(a)+g(a) f^{\prime}(a)$

$$
\frac{d}{d x}[f g]=f g^{\prime}+g f^{\prime}
$$

Proof: Let f and g be differentiable at a
$(f g)^{\prime}(a)=$
8. Prove: If $f(x)=x^{n}$ for negative integer n, then $f^{\prime}(x)=n x^{n-1}$.
[Hint: Let $m=-n>0$ and write as a fraction and use the previous theorems/rules.]
Proof:

Note: Although we've only proven the power rule for positive and negative integers, it holds for any real number. (We may prove later, if given time)

Homework: Finish Worksheet(s) and Section 28: \#1, 2, 3, 6, 7, 14(a)

