1. Theorem If f is differentiable at a point a, then f is continuous at a.

Proof:
Let f be differentiable at a. [Show that f is continuous at a]
Then $f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}$ exists and is a finite number. [Show $\lim _{x \rightarrow a} f(x)=$ \qquad]
["Trick"] Write $f(x)=(x-a) \cdot \frac{f(x)-f(a)}{x-a}+f(a) \quad \longleftarrow$ Convince yourself this is true.

Then

$$
\begin{aligned}
& \lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a}\left[(x-a) \cdot \frac{f(x)-f(a)}{x-a}+f(a)\right] \\
& =\lim _{x \rightarrow a}(x-a) \cdot \lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}+\lim _{x \rightarrow a} \quad \text { by limit laws since they are all finite. } \\
& =0 . \quad+f(a) \text { by evaluating the limits (using limit laws and the definition of derivative). } \\
& \text { i.e. } \\
& =f(a)
\end{aligned}
$$

Therefore, by definition, $f(x)$ is \qquad at a.
2. The converse is not true: If $f(x)$ is continuous at a, then it may or may not be differentiable at a.
(a). Sketch a picture of $f(x)=|x|$ and note that it is continuous at $x=0$.

However, $f(x)=|x|$ is not differentiable at $x=0$. In terms of the picture and tangent lines, explain in your own words why it can't be differentiable there. [Note:"Because it has a sharp corner" is not a sufficient explanation. Basically you need to explain why corners are not differentiable.]
(b). Use the limit definition of derivative to show that $f(x)=|x|$ is not differentiable at $x=0$. [Hint: Look at the one sided limits].

